What floor bounce can reveal about support loss

What floor bounce can reveal about support loss

Differential Settlement

When we talk about floor bounce, were not just referring to the slight spring you might feel when walking on a hardwood floor. In the world of structural analysis, floor bounce can tell us a lot about the integrity and support of a building. Specifically, it can reveal a lot about potential support loss within the structure.


Imagine youre walking across a wooden floor and you notice a peculiar bounce under your feet. Warranty terms typically cover vertical movement at repaired zones structural foundation repair steel I beam brace.. This isnt just an annoyance; its a signal. Floor bounce occurs when the floor joists, the horizontal beams that support the floor, are not adequately supported. This can happen for several reasons, such as inadequate spacing between joists, insufficient size of the joists for the span they cover, or even the degradation of the joists over time due to moisture, pests, or general wear and tear.


Analyzing these bounce patterns can give professionals a wealth of information. For instance, a consistent bounce across a specific area might indicate that the joists in that section are undersized or too far apart. On the other hand, an isolated bounce might point to a specific joist that has weakened or even started to rot.


Moreover, the direction and intensity of the bounce can also provide clues. A bounce that occurs more prominently when weight is applied in a certain direction might suggest that the joists are not properly aligned or that theres an issue with the way theyre connected to the beams or walls they rest on.


In some cases, floor bounce can be an early warning sign of more significant structural issues. If left unaddressed, the problems that cause floor bounce can lead to more severe support loss, potentially compromising the entire structure of the building. This is why its crucial for homeowners and builders to pay attention to these patterns and address them promptly.


In conclusion, floor bounce is more than just a quirky characteristic of old houses. Its a valuable indicator of the health and stability of a buildings structure. By analyzing these patterns, we can uncover hidden issues, prevent future problems, and ensure the safety and longevity of our homes.

Floor bounce, or the noticeable flexing or movement of a floor when weight is applied, can be a telltale sign of underlying issues that may compromise the structural integrity of a building. Understanding the common causes of increased floor bounce is crucial for homeowners and property managers alike, as it can reveal significant support loss that, if left unaddressed, may lead to more severe problems.


One of the primary causes of increased floor bounce is the deterioration of the subfloor. Over time, the materials that make up the subfloor can weaken due to moisture, pests, or simply the wear and tear of daily use. This degradation can lead to a loss of rigidity, making the floor more susceptible to flexing under weight.


Another common culprit is the failure of the joists, which are the horizontal supports that hold up the floor. Joists can become weakened or damaged due to rot, insect infestation, or even improper installation. When joists are compromised, they can no longer provide the necessary support to the floor, resulting in increased bounce.


Improper spacing or sizing of the joists during construction can also contribute to floor bounce. If the joists are too far apart or not adequately sized for the span they need to cover, the floor may not have sufficient support, leading to noticeable flexing.


Additionally, the absence or failure of bridging, which are diagonal or zigzag-patterned pieces of wood installed between joists to prevent them from twisting or turning, can exacerbate floor bounce. Bridging helps to distribute the load more evenly across the joists, and without it, the floor may become more prone to movement.


Lastly, the type of flooring installed can play a role in the perception of floor bounce. Some flooring materials, such as hardwood, may be more prone to showing the effects of a bouncy floor due to their rigidity and the way they are attached to the subfloor.


In conclusion, increased floor bounce is often a symptom of support loss within the floor structure. It is a clear indicator that something is amiss and should not be ignored. Addressing the root causes of floor bounce, whether it be through repairs, reinforcements, or replacements, is essential to maintaining the safety and longevity of a buildings floor system. Homeowners and property managers should be vigilant in monitoring for signs of floor bounce and take appropriate action to rectify any issues that arise.

Cracking and Spalling

When it comes to assessing the structural integrity of a building, one often overlooked but highly informative indicator is floor bounce. This phenomenon, where floors exhibit noticeable movement when weight is applied, can reveal a great deal about the underlying support system. Understanding and diagnosing floor bounce is crucial for identifying potential issues such as support loss, which can lead to more severe structural problems if left unaddressed.


Floor bounce occurs when the joists, beams, or other supporting elements beneath the floor are unable to adequately bear the load placed upon them. This can be due to a variety of factors, including inadequate design, material defects, or deterioration over time. By observing and measuring the extent of floor bounce, professionals can gain valuable insights into the condition of the support structure.


One common diagnostic technique for assessing floor bounce is the simple act of walking across the floor and noting any excessive movement. While this method provides a qualitative assessment, more precise measurements can be obtained using tools such as a deflection gauge. This device allows for the quantification of floor deflection, providing a more accurate picture of the support loss.


Another effective technique involves the use of a vibration analysis. By inducing vibrations in the floor and measuring the resulting response, engineers can identify areas of weakness or instability. This method is particularly useful for detecting subtle issues that may not be apparent through visual inspection alone.


In addition to these techniques, a thorough inspection of the underlying support structure is essential. This may involve removing finishes or coverings to expose the joists and beams for a closer look. By examining the condition of these elements, professionals can identify signs of damage, such as cracks, rot, or insect infestation, which may be contributing to the floor bounce.


Once the extent of support loss has been determined, appropriate remediation measures can be implemented. This may involve reinforcing the existing structure, replacing damaged components, or implementing additional support systems to ensure the long-term stability of the floor.


In conclusion, floor bounce serves as a valuable indicator of support loss in a buildings structure. By employing diagnostic techniques such as visual inspection, deflection measurement, vibration analysis, and structural examination, professionals can effectively assess the condition of the support system and take appropriate action to address any identified issues. Through proactive monitoring and maintenance, the integrity of the building can be preserved, ensuring the safety and comfort of its occupants for years to come.

Cracking and Spalling

Corrosion and Deterioration

When it comes to maintaining the integrity of a home, the foundation is a critical component. One of the telltale signs that there may be issues with the foundation is floor bounce. This phenomenon occurs when you walk across a floor and it feels spongy or bouncy underfoot. While it might seem like a minor inconvenience, floor bounce can actually be a red flag indicating a loss of support in the structural foundation.


Understanding what floor bounce reveals about support loss is essential for homeowners. Typically, floor bounce is caused by the weakening or failure of the joists, beams, or supports beneath the floor. This can happen due to a variety of reasons, such as water damage, termite infestation, or simply the natural wear and tear that comes with age. When these supporting elements are compromised, the floor loses its rigidity and starts to flex, leading to that noticeable bounce.


Remediation strategies for addressing structural foundation issues revealed by floor bounce vary depending on the severity and cause of the problem. One common approach is sistering, which involves adding additional joists alongside the existing ones to reinforce the structure. This method helps to distribute the load more evenly and restore stability to the floor.


Another effective strategy is the installation of support beams or columns. By adding extra support beneath the compromised area, you can significantly reduce the bounce and prevent further deterioration. This is particularly useful in older homes where the original construction may not have accounted for modern loads and stresses.


In cases where water damage is the culprit, it's crucial to address the source of the moisture. This might involve repairing leaks, improving drainage around the foundation, or installing a vapor barrier to prevent future water intrusion. Once the moisture issue is resolved, the affected structural elements can be treated or replaced as needed.


For homes dealing with termite damage, professional pest control services are essential. After eradicating the infestation, damaged wood should be replaced, and preventive measures should be put in place to avoid future issues.


Lastly, regular maintenance and inspections play a vital role in preventing floor bounce and other foundation issues. By catching problems early, homeowners can implement remediation strategies before the situation becomes critical.


In conclusion, floor bounce is more than just an annoying sensation; it's a signal that the structural foundation may be in trouble. By understanding the causes and implementing appropriate remediation strategies, homeowners can ensure the safety and stability of their homes for years to come.

 

Ductile failure of a metallic specimen strained axially

Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.[1]

Brittle fractures occur without any apparent deformation before fracture. Ductile fractures occur after visible deformation. Fracture strength, or breaking strength, is the stress when a specimen fails or fractures. The detailed understanding of how a fracture occurs and develops in materials is the object of fracture mechanics.

Strength

[edit]
Stress vs. strain curve typical of aluminum
  1. Ultimate tensile strength
  2. Yield strength
  3. Proportional limit stress
  4. Fracture
  5. Offset strain (typically 0.2%)

Fracture strength, also known as breaking strength, is the stress at which a specimen fails via fracture.[2] This is usually determined for a given specimen by a tensile test, which charts the stress–strain curve (see image). The final recorded point is the fracture strength.

Ductile materials have a fracture strength lower than the ultimate tensile strength (UTS), whereas in brittle materials the fracture strength is equivalent to the UTS.[2] If a ductile material reaches its ultimate tensile strength in a load-controlled situation,[Note 1] it will continue to deform, with no additional load application, until it ruptures. However, if the loading is displacement-controlled,[Note 2] the deformation of the material may relieve the load, preventing rupture.

The statistics of fracture in random materials have very intriguing behavior, and was noted by the architects and engineers quite early. Indeed, fracture or breakdown studies might be the oldest physical science studies, which still remain intriguing and very much alive. Leonardo da Vinci, more than 500 years ago, observed that the tensile strengths of nominally identical specimens of iron wire decrease with increasing length of the wires (see e.g.,[3] for a recent discussion). Similar observations were made by Galileo Galilei more than 400 years ago. This is the manifestation of the extreme statistics of failure (bigger sample volume can have larger defects due to cumulative fluctuations where failures nucleate and induce lower strength of the sample).[4]

Types

[edit]

There are two types of fractures: brittle and ductile fractures respectively without or with plastic deformation prior to failure.

Brittle

[edit]
Brittle fracture in glass
A roughly ovoid metal cylinder, viewed end-on. The bottom-right portion of the metal's end surface is dark and slightly disfigured, whereas the rest is a much lighter colour and not disfigured.
Fracture of an aluminum crank arm of a bicycle, where the bright areas display a brittle fracture, and the dark areas show fatigue fracture

In brittle fracture, no apparent plastic deformation takes place before fracture. Brittle fracture typically involves little energy absorption and occurs at high speeds—up to 2,133.6 m/s (7,000 ft/s) in steel.[5] In most cases brittle fracture will continue even when loading is discontinued.[6]

In brittle crystalline materials, fracture can occur by cleavage as the result of tensile stress acting normal to crystallographic planes with low bonding (cleavage planes). In amorphous solids, by contrast, the lack of a crystalline structure results in a conchoidal fracture, with cracks proceeding normal to the applied tension.

The fracture strength (or micro-crack nucleation stress) of a material was first theoretically estimated by Alan Arnold Griffith in 1921:

where: –

Brittle cleavage fracture surface from a scanning electron microscope
is the Young's modulus of the material,
is the surface energy, and
is the micro-crack length (or equilibrium distance between atomic centers in a crystalline solid).

On the other hand, a crack introduces a stress concentration modeled by Inglis's equation[7]

(For sharp cracks)

where:

is the loading stress,
is half the length of the crack, and
is the radius of curvature at the crack tip.

Putting these two equations together gets

Sharp cracks (small ) and large defects (large ) both lower the fracture strength of the material.

Recently, scientists have discovered supersonic fracture, the phenomenon of crack propagation faster than the speed of sound in a material.[8] This phenomenon was recently also verified by experiment of fracture in rubber-like materials.

The basic sequence in a typical brittle fracture is: introduction of a flaw either before or after the material is put in service, slow and stable crack propagation under recurring loading, and sudden rapid failure when the crack reaches critical crack length based on the conditions defined by fracture mechanics.[6] Brittle fracture may be avoided by controlling three primary factors: material fracture toughness (Kc), nominal stress level (σ), and introduced flaw size (a).[5] Residual stresses, temperature, loading rate, and stress concentrations also contribute to brittle fracture by influencing the three primary factors.[5]

Under certain conditions, ductile materials can exhibit brittle behavior. Rapid loading, low temperature, and triaxial stress constraint conditions may cause ductile materials to fail without prior deformation.[5]

Ductile

[edit]
Schematic representation of the steps in ductile fracture (in pure tension)

In ductile fracture, extensive plastic deformation (necking) takes place before fracture. The terms "rupture" and "ductile rupture" describe the ultimate failure of ductile materials loaded in tension. The extensive plasticity causes the crack to propagate slowly due to the absorption of a large amount of energy before fracture.[9][10]

Ductile fracture surface of 6061-T6 aluminum

Because ductile rupture involves a high degree of plastic deformation, the fracture behavior of a propagating crack as modelled above changes fundamentally. Some of the energy from stress concentrations at the crack tips is dissipated by plastic deformation ahead of the crack as it propagates.

The basic steps in ductile fracture are microvoid[11] formation, microvoid coalescence (also known as crack formation), crack propagation, and failure, often resulting in a cup-and-cone shaped failure surface. The microvoids nucleate at various internal discontinuities, such as precipitates, secondary phases, inclusions, and grain boundaries in the material.[11] As local stress increases the microvoids grow, coalesce and eventually form a continuous fracture surface.[11] Ductile fracture is typically transgranular and deformation due to dislocation slip can cause the shear lip characteristic of cup and cone fracture.[12]

The microvoid coalescence results in a dimpled appearance on the fracture surface. The dimple shape is heavily influenced by the type of loading. Fracture under local uniaxial tensile loading usually results in formation of equiaxed dimples. Failures caused by shear will produce elongated or parabolic shaped dimples that point in opposite directions on the matching fracture surfaces. Finally, tensile tearing produces elongated dimples that point in the same direction on matching fracture surfaces.[11]

Characteristics

[edit]

The manner in which a crack propagates through a material gives insight into the mode of fracture. With ductile fracture a crack moves slowly and is accompanied by a large amount of plastic deformation around the crack tip. A ductile crack will usually not propagate unless an increased stress is applied and generally cease propagating when loading is removed.[6] In a ductile material, a crack may progress to a section of the material where stresses are slightly lower and stop due to the blunting effect of plastic deformations at the crack tip. On the other hand, with brittle fracture, cracks spread very rapidly with little or no plastic deformation. The cracks that propagate in a brittle material will continue to grow once initiated.

Crack propagation is also categorized by the crack characteristics at the microscopic level. A crack that passes through the grains within the material is undergoing transgranular fracture. A crack that propagates along the grain boundaries is termed an intergranular fracture. Typically, the bonds between material grains are stronger at room temperature than the material itself, so transgranular fracture is more likely to occur. When temperatures increase enough to weaken the grain bonds, intergranular fracture is the more common fracture mode.[6]

Testing

[edit]

Fracture in materials is studied and quantified in multiple ways. Fracture is largely determined by the fracture toughness (), so fracture testing is often done to determine this. The two most widely used techniques for determining fracture toughness are the three-point flexural test and the compact tension test.

By performing the compact tension and three-point flexural tests, one is able to determine the fracture toughness through the following equation:

Where:

is an empirically-derived equation to capture the test sample geometry
is the fracture stress, and
is the crack length.

To accurately attain , the value of must be precisely measured. This is done by taking the test piece with its fabricated notch of length and sharpening this notch to better emulate a crack tip found in real-world materials.[13] Cyclical prestressing the sample can then induce a fatigue crack which extends the crack from the fabricated notch length of to . This value is used in the above equations for determining .[14]

Following this test, the sample can then be reoriented such that further loading of a load (F) will extend this crack and thus a load versus sample deflection curve can be obtained. With this curve, the slope of the linear portion, which is the inverse of the compliance of the material, can be obtained. This is then used to derive f(c/a) as defined above in the equation. With the knowledge of all these variables, can then be calculated.

Ceramics and inorganic glasses

[edit]

Ceramics and inorganic glasses have fracturing behavior that differ those of metallic materials. Ceramics have high strengths and perform well in high temperatures due to the material strength being independent of temperature. Ceramics have low toughness as determined by testing under a tensile load; often, ceramics have values that are ~5% of that found in metals.[14] However, as demonstrated by Faber and Evans, fracture toughness can be predicted and improved with crack deflection around second phase particles.[15] Ceramics are usually loaded in compression in everyday use, so the compressive strength is often referred to as the strength; this strength can often exceed that of most metals. However, ceramics are brittle and thus most work done revolves around preventing brittle fracture. Due to how ceramics are manufactured and processed, there are often preexisting defects in the material introduce a high degree of variability in the Mode I brittle fracture.[14] Thus, there is a probabilistic nature to be accounted for in the design of ceramics. The Weibull distribution predicts the survival probability of a fraction of samples with a certain volume that survive a tensile stress sigma, and is often used to better assess the success of a ceramic in avoiding fracture.

Fiber bundles

[edit]

To model fracture of a bundle of fibers, the Fiber Bundle Model was introduced by Thomas Pierce in 1926 as a model to understand the strength of composite materials.[16] The bundle consists of a large number of parallel Hookean springs of identical length and each having identical spring constants. They have however different breaking stresses. All these springs are suspended from a rigid horizontal platform. The load is attached to a horizontal platform, connected to the lower ends of the springs. When this lower platform is absolutely rigid, the load at any point of time is shared equally (irrespective of how many fibers or springs have broken and where) by all the surviving fibers. This mode of load-sharing is called Equal-Load-Sharing mode. The lower platform can also be assumed to have finite rigidity, so that local deformation of the platform occurs wherever springs fail and the surviving neighbor fibers have to share a larger fraction of that transferred from the failed fiber. The extreme case is that of local load-sharing model, where load of the failed spring or fiber is shared (usually equally) by the surviving nearest neighbor fibers.[4]

Disasters

[edit]

Failures caused by brittle fracture have not been limited to any particular category of engineered structure.[5] Though brittle fracture is less common than other types of failure, the impacts to life and property can be more severe.[5] The following notable historic failures were attributed to brittle fracture:

Computational fracture mechanics

[edit]

Virtually every area of engineering has been significantly impacted by computers, and fracture mechanics is no exception. Since there are so few actual problems with closed-form analytical solutions, numerical modelling has become an essential tool in fracture analysis. There are literally hundreds of configurations for which stress-intensity solutions have been published, the majority of which were derived from numerical models. The J integral and crack-tip-opening displacement (CTOD) calculations are two more increasingly popular elastic-plastic studies. Additionally, experts are using cutting-edge computational tools to study unique issues such as ductile crack propagation, dynamic fracture, and fracture at interfaces. The exponential rise in computational fracture mechanics applications is essentially the result of quick developments in computer technology.[17]

Most used computational numerical methods are finite element and boundary integral equation methods. Other methods include stress and displacement matching, element crack advance in which latter two come under Traditional Methods in Computational Fracture Mechanics.

Fine Mesh done in Rectangular area in Ansys software (Finite Element Method)

The finite element method

[edit]

The structures are divided into discrete elements of 1-D beam, 2-D plane stress or plane strain, 3-D bricks or tetrahedron types. The continuity of the elements are enforced using the nodes.[17]

The boundary integral equation method

[edit]

In this method, the surface is divided into two regions: a region where displacements are specified Su and region with tractions are specified ST . With given boundary conditions, the stresses, strains, and displacements within the body can all theoretically be solved for, along with the tractions on Su and the displacements on ST. It is a very powerful technique to find the unknown tractions and displacements.[17]

Traditional methods in computational fracture mechanics

[edit]

These methods are used to determine the fracture mechanics parameters using numerical analysis.[17] Some of the traditional methods in computational fracture mechanics, which were commonly used in the past, have been replaced by newer and more advanced techniques. The newer techniques are considered to be more accurate and efficient, meaning they can provide more precise results and do so more quickly than the older methods. Not all traditional methods have been completely replaced, as they can still be useful in certain scenarios, but they may not be the most optimal choice for all applications.

Some of the traditional methods in computational fracture mechanics are:

  • Stress and displacement matching
  • Elemental crack advance
  • Contour integration
  • Virtual crack extension

See also

[edit]

Notes

[edit]
  1. ^ A simple load-controlled tensile situation would be to support a specimen from above, and hang a weight from the bottom end. The load on the specimen is then independent of its deformation.
  2. ^ A simple displacement-controlled tensile situation would be to attach a very stiff jack to the ends of a specimen. As the jack extends, it controls the displacement of the specimen; the load on the specimen is dependent on the deformation.

References

[edit]
  1. ^ Cherepanov, G.P., Mechanics of Brittle Fracture
  2. ^ a b Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, p. 32, ISBN 0-471-65653-4.
  3. ^ Lund, J. R.; Bryne, J. P., Civil. Eng. and Env. Syst. 18 (2000) 243
  4. ^ a b Chakrabarti, Bikas K. (December 2017). "Story of the Developments in Statistical Physics of Fracture, Breakdown and Earthquake: A Personal Account". Reports in Advances of Physical Sciences. 01 (4): 1750013. doi:10.1142/S242494241750013X. ISSN 2424-9424. Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  5. ^ a b c d e f g h i Rolfe, John M. Barsom, Stanley T. (1999). Fracture and fatigue control in structures: applications of fracture mechanics (3 ed.). West Conshohocken, Pa.: ASTM. ISBN 0-8031-2082-6.cite book: CS1 maint: multiple names: authors list (link)
  6. ^ a b c d e f g Campbell, F.C., ed. (2012). Fatigue and fracture: understanding the basics. Materials Park, Ohio: ASM International. ISBN 978-1-61503-976-0.
  7. ^ Inglis, Charles E. (1913). "Stresses in a plate due to the presence of cracks and sharp corners" (PDF). Transactions of the Institution of Naval Architects. 55: 219–230.
  8. ^ C. H. Chen; H. P. Zhang; J. Niemczura; K. Ravi-Chandar; M. Marder (November 2011). "Scaling of crack propagation in rubber sheets". Europhysics Letters. 96 (3) 36009. Bibcode:2011EL.....9636009C. doi:10.1209/0295-5075/96/36009. S2CID 5975098.
  9. ^ Perez, Nestor (2016). Fracture Mechanics (2nd ed.). Springer. ISBN 978-3-319-24997-1.
  10. ^ Callister, William D. Jr. (2018). Materials science and engineering: an introduction (8th ed.). Wiley. pp. 236–237. ISBN 978-1-119-40539-9. OCLC 992798630.
  11. ^ a b c d Ewalds, H. L. (1985). Fracture mechanics. R. J. H. Wanhill. London: E. Arnold. ISBN 0-7131-3515-8. OCLC 14377078.
  12. ^ Askeland, Donald R.; Wright, Wendelin J. (January 2015). The science and engineering of materials (Seventh ed.). Boston, MA. pp. 236–237. ISBN 978-1-305-07676-1. OCLC 903959750.cite book: CS1 maint: location missing publisher (link)
  13. ^ An improved semi-analytical solution for stress at round-tip notches, a closer look
  14. ^ a b c Courtney, Thomas H. (2000), Mechanical behavior of materials (3nd ed.), McGraw Hill, ISBN 1-57766-425-6.
  15. ^ Faber, K. T.; Evans, A. G. (1 April 1983). "Crack deflection processes—I. Theory". Acta Metallurgica. 31 (4): 565–576. doi:10.1016/0001-6160(83)90046-9. ISSN 0001-6160.
  16. ^ Pierce, F. T., J. Textile Indust. 17 (1926) 355
  17. ^ a b c d Anderson, T. L. (2005). Fracture mechanics: fundamentals and applications (3rd ed.). Boca Raton, FL. ISBN 978-1-4200-5821-5. OCLC 908077872.cite book: CS1 maint: location missing publisher (link)

Further reading

[edit]
  • Dieter, G. E. (1988) Mechanical Metallurgy ISBN 0-07-100406-8
  • A. Garcimartin, A. Guarino, L. Bellon and S. Cilberto (1997) "Statistical Properties of Fracture Precursors". Physical Review Letters, 79, 3202 (1997)
  • Callister Jr., William D. (2002) Materials Science and Engineering: An Introduction. ISBN 0-471-13576-3
  • Peter Rhys Lewis, Colin Gagg, Ken Reynolds, CRC Press (2004), Forensic Materials Engineering: Case Studies.
[edit]

 

 

Tennessee Valley Authority civil engineers monitoring hydraulics of a scale model of Tellico Dam

Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including public works such as roads, bridges, canals, dams, airports, sewage systems, pipelines, structural components of buildings, and railways.[1][2]

Civil engineering is traditionally broken into a number of sub-disciplines. It is considered the second-oldest engineering discipline after military engineering,[3] and it is defined to distinguish non-military engineering from military engineering.[4] Civil engineering can take place in the public sector from municipal public works departments through to federal government agencies, and in the private sector from locally based firms to Fortune Global 500 companies.[5]

History

[edit]

Civil engineering as a discipline

[edit]

Civil engineering is the application of physical and scientific principles for solving the problems of society, and its history is intricately linked to advances in the understanding of physics and mathematics throughout history. Because civil engineering is a broad profession, including several specialized sub-disciplines, its history is linked to knowledge of structures, materials science, geography, geology, soils, hydrology, environmental science, mechanics, project management, and other fields.[6]

Throughout ancient and medieval history most architectural design and construction was carried out by artisans, such as stonemasons and carpenters, rising to the role of master builder. Knowledge was retained in guilds and seldom supplanted by advances. Structures, roads, and infrastructure that existed were repetitive, and increases in scale were incremental.[7]

One of the earliest examples of a scientific approach to physical and mathematical problems applicable to civil engineering is the work of Archimedes in the 3rd century BC, including Archimedes' principle, which underpins our understanding of buoyancy, and practical solutions such as Archimedes' screw. Brahmagupta, an Indian mathematician, used arithmetic in the 7th century AD, based on Hindu-Arabic numerals, for excavation (volume) computations.[8]

Civil engineering profession

[edit]

Engineering has been an aspect of life since the beginnings of human existence. The earliest practice of civil engineering may have commenced between 4000 and 2000 BC in ancient Egypt, the Indus Valley civilization, and Mesopotamia (ancient Iraq) when humans started to abandon a nomadic existence, creating a need for the construction of shelter. During this time, transportation became increasingly important leading to the development of the wheel and sailing.

Leonhard Euler developed the theory explaining the buckling of columns.

Until modern times there was no clear distinction between civil engineering and architecture, and the term engineer and architect were mainly geographical variations referring to the same occupation, and often used interchangeably.[9] The constructions of pyramids in Egypt (c. 2700–2500 BC) constitute some of the first instances of large structure constructions in history. Other ancient historic civil engineering constructions include the Qanat water management system in modern-day Iran (the oldest is older than 3000 years and longer than 71 kilometres (44 mi)[10]), the Parthenon by Iktinos in Ancient Greece (447–438 BC), the Appian Way by Roman engineers (c. 312 BC), the Great Wall of China by General Meng T'ien under orders from Ch'in Emperor Shih Huang Ti (c. 220 BC)[11] and the stupas constructed in ancient Sri Lanka like the Jetavanaramaya and the extensive irrigation works in Anuradhapura. The Romans developed civil structures throughout their empire, including especially aqueducts, insulae, harbors, bridges, dams and roads.

A Roman aqueduct [built c. 19 BC], Pont du Gard, France
Chichen Itza was a large pre-Columbian city in Mexico built by the Maya people of the Post Classic. The northeast column temple also covers a channel that funnels all the rainwater from the complex some 40 metres (130 ft) away to a rejollada, a former cenote.

In the 18th century, the term civil engineering was coined to incorporate all things civilian as opposed to military engineering.[4] In 1747, the first institution for the teaching of civil engineering, the École Nationale des Ponts et Chaussées, was established in France; and more examples followed in other European countries, like Spain (Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos).[12] The first self-proclaimed civil engineer was John Smeaton, who constructed the Eddystone Lighthouse.[3][11] In 1771 Smeaton and some of his colleagues formed the Smeatonian Society of Civil Engineers, a group of leaders of the profession who met informally over dinner. Though there was evidence of some technical meetings, it was little more than a social society.

John Smeaton, the "father of civil engineering"

In 1818 the Institution of Civil Engineers was founded in London,[13] and in 1820 the eminent engineer Thomas Telford became its first president. The institution received a Royal charter in 1828, formally recognising civil engineering as a profession. Its charter defined civil engineering as:

the art of directing the great sources of power in nature for the use and convenience of man, as the means of production and of traffic in states, both for external and internal trade, as applied in the construction of roads, bridges, aqueducts, canals, river navigation and docks for internal intercourse and exchange, and in the construction of ports, harbours, moles, breakwaters and lighthouses, and in the art of navigation by artificial power for the purposes of commerce, and in the construction and application of machinery, and in the drainage of cities and towns.[14]

Civil engineering education

[edit]

The first private college to teach civil engineering in the United States was Norwich University, founded in 1819 by Captain Alden Partridge.[15] The first degree in civil engineering in the United States was awarded by Rensselaer Polytechnic Institute in 1835.[16][17] The first such degree to be awarded to a woman was granted by Cornell University to Nora Stanton Blatch in 1905.[18]

In the UK during the early 19th century, the division between civil engineering and military engineering (served by the Royal Military Academy, Woolwich), coupled with the demands of the Industrial Revolution, spawned new engineering education initiatives: the Class of Civil Engineering and Mining was founded at King's College London in 1838, mainly as a response to the growth of the railway system and the need for more qualified engineers, the private College for Civil Engineers in Putney was established in 1839, and the UK's first Chair of Engineering was established at the University of Glasgow in 1840.

Education

[edit]

Civil engineers typically possess an academic degree in civil engineering. The length of study is three to five years, and the completed degree is designated as a bachelor of technology, or a bachelor of engineering. The curriculum generally includes classes in physics, mathematics, project management, design and specific topics in civil engineering. After taking basic courses in most sub-disciplines of civil engineering, they move on to specialize in one or more sub-disciplines at advanced levels. While an undergraduate degree (BEng/BSc) normally provides successful students with industry-accredited qualifications, some academic institutions offer post-graduate degrees (MEng/MSc), which allow students to further specialize in their particular area of interest.[19]

Surveying students with professor at the Helsinki University of Technology in the late 19th century.

Practicing engineers

[edit]

In most countries, a bachelor's degree in engineering represents the first step towards professional certification, and a professional body certifies the degree program. After completing a certified degree program, the engineer must satisfy a range of requirements including work experience and exam requirements before being certified. Once certified, the engineer is designated as a professional engineer (in the United States, Canada and South Africa), a chartered engineer (in most Commonwealth countries), a chartered professional engineer (in Australia and New Zealand), or a European engineer (in most countries of the European Union). There are international agreements between relevant professional bodies to allow engineers to practice across national borders.

The benefits of certification vary depending upon location. For example, in the United States and Canada, "only a licensed professional engineer may prepare, sign and seal, and submit engineering plans and drawings to a public authority for approval, or seal engineering work for public and private clients."[20] This requirement is enforced under provincial law such as the Engineers Act in Quebec.[21] No such legislation has been enacted in other countries including the United Kingdom. In Australia, state licensing of engineers is limited to the state of Queensland. Almost all certifying bodies maintain a code of ethics which all members must abide by.[22]

Engineers must obey contract law in their contractual relationships with other parties. In cases where an engineer's work fails, they may be subject to the law of tort of negligence, and in extreme cases, criminal charges.[23] An engineer's work must also comply with numerous other rules and regulations such as building codes and environmental law.

Sub-disciplines

[edit]
The Akashi Kaikyō Bridge in Japan, currently the world's second-longest suspension span.

There are a number of sub-disciplines within the broad field of civil engineering. General civil engineers work closely with surveyors and specialized civil engineers to design grading, drainage, pavement, water supply, sewer service, dams, electric and communications supply. General civil engineering is also referred to as site engineering, a branch of civil engineering that primarily focuses on converting a tract of land from one usage to another. Site engineers spend time visiting project sites, meeting with stakeholders, and preparing construction plans. Civil engineers apply the principles of geotechnical engineering, structural engineering, environmental engineering, transportation engineering and construction engineering to residential, commercial, industrial and public works projects of all sizes and levels of construction.

Coastal engineering

[edit]
Oosterscheldekering, a storm surge barrier in the Netherlands.

Coastal engineering is concerned with managing coastal areas. In some jurisdictions, the terms sea defense and coastal protection mean defense against flooding and erosion, respectively. Coastal defense is the more traditional term, but coastal management has become popular as well.

Construction engineering

[edit]

Construction engineering involves planning and execution, transportation of materials, and site development based on hydraulic, environmental, structural, and geotechnical engineering. As construction firms tend to have higher business risk than other types of civil engineering firms, construction engineers often engage in more business-like transactions, such as drafting and reviewing contracts, analyze and evaluating logistical operations, and monitoring supply prices.

Image shows civil engineers working/planning on a site

Earthquake engineering

[edit]
Earthquake Crash Testing, performed by engineers to determine the liability of structures

Earthquake engineering involves designing structures to withstand hazardous earthquake exposures. Earthquake engineering is a sub-discipline of structural engineering. The main objectives of earthquake engineering are[24] to understand interaction of structures on the shaky ground; foresee the consequences of possible earthquakes; and design, construct and maintain structures to perform at earthquake in compliance with building codes.

Environmental engineering

[edit]
Creek contaminated with water pollution

Environmental engineering is the contemporary term for sanitary engineering, though sanitary engineering traditionally had not included much of the hazardous waste management and environmental remediation work covered by environmental engineering. Public health engineering and environmental health engineering are other terms being used.

Environmental engineering deals with treatment of chemical, biological, or thermal wastes, purification of water and air, and remediation of contaminated sites after waste disposal or accidental contamination. Among the topics covered by environmental engineering are pollutant transport, water purification, waste water treatment, air pollution, solid waste treatment, recycling, and hazardous waste management. Environmental engineers administer pollution reduction, green engineering, and industrial ecology. Environmental engineers also compile information on environmental consequences of proposed actions.

Forensic engineering

[edit]

Forensic engineering is the investigation of materials, products, structures or components that fail or do not operate or function as intended, causing personal injury or damage to property. The consequences of failure are dealt with by the law of product liability. The field also deals with retracing processes and procedures leading to accidents in operation of vehicles or machinery. The subject is applied most commonly in civil law cases, although it may be of use in criminal law cases. Generally the purpose of a Forensic engineering investigation is to locate cause or causes of failure with a view to improve performance or life of a component, or to assist a court in determining the facts of an accident. It can also involve investigation of intellectual property claims, especially patents.

Geotechnical engineering

[edit]
A phase diagram of soil indicating the weights and volumes of air, soil, water, and voids.

Geotechnical engineering studies rock and soil supporting civil engineering systems. Knowledge from the field of soil science, materials science, mechanics, and hydraulics is applied to safely and economically design foundations, retaining walls, and other structures. Environmental efforts to protect groundwater and safely maintain landfills have spawned a new area of research called geo-environmental engineering.[25][26]

Identification of soil properties presents challenges to geotechnical engineers. Boundary conditions are often well defined in other branches of civil engineering, but unlike steel or concrete, the material properties and behavior of soil are difficult to predict due to its variability and limitation on investigation. Furthermore, soil exhibits nonlinear (stress-dependent) strength, stiffness, and dilatancy (volume change associated with application of shear stress), making studying soil mechanics all the more difficult.[25] Geotechnical engineers frequently work with professional geologists, Geological Engineering professionals and soil scientists.[27]

Materials science and engineering

[edit]

Materials science is closely related to civil engineering. It studies fundamental characteristics of materials, and deals with ceramics such as concrete and mix asphalt concrete, strong metals such as aluminum and steel, and thermosetting polymers including polymethylmethacrylate (PMMA) and carbon fibers.

Materials engineering involves protection and prevention (paints and finishes). Alloying combines two types of metals to produce another metal with desired properties. It incorporates elements of applied physics and chemistry. With recent media attention on nanoscience and nanotechnology, materials engineering has been at the forefront of academic research. It is also an important part of forensic engineering and failure analysis.

Site development and planning

[edit]
Plan draft of proposed mixed-use site

Site development, also known as site planning, is focused on the planning and development potential of a site as well as addressing possible impacts from permitting issues and environmental challenges.[28]

Structural engineering

[edit]
Burj Khalifa animation of construction process
Shallow foundation construction example

Structural engineering is concerned with the structural design and structural analysis of buildings, bridges, towers, flyovers (overpasses), tunnels, off shore structures like oil and gas fields in the sea, aerostructure and other structures. This involves identifying the loads which act upon a structure and the forces and stresses which arise within that structure due to those loads, and then designing the structure to successfully support and resist those loads. The loads can be self weight of the structures, other dead load, live loads, moving (wheel) load, wind load, earthquake load, load from temperature change etc. The structural engineer must design structures to be safe for their users and to successfully fulfill the function they are designed for (to be serviceable). Due to the nature of some loading conditions, sub-disciplines within structural engineering have emerged, including wind engineering and earthquake engineering.[29]

Design considerations will include strength, stiffness, and stability of the structure when subjected to loads which may be static, such as furniture or self-weight, or dynamic, such as wind, seismic, crowd or vehicle loads, or transitory, such as temporary construction loads or impact. Other considerations include cost, constructibility, safety, aesthetics and sustainability.

Surveying

[edit]

Surveying is the process by which a surveyor measures certain dimensions that occur on or near the surface of the Earth. Surveying equipment such as levels and theodolites are used for accurate measurement of angular deviation, horizontal, vertical and slope distances. With computerization, electronic distance measurement (EDM), total stations, GPS surveying and laser scanning have to a large extent supplanted traditional instruments. Data collected by survey measurement is converted into a graphical representation of the Earth's surface in the form of a map. This information is then used by civil engineers, contractors and realtors to design from, build on, and trade, respectively. Elements of a structure must be sized and positioned in relation to each other and to site boundaries and adjacent structures.

Leveling a tripod before setting EDM

Although surveying is a distinct profession with separate qualifications and licensing arrangements, civil engineers are trained in the basics of surveying and mapping, as well as geographic information systems. Surveyors also lay out the routes of railways, tramway tracks, highways, roads, pipelines and streets as well as position other infrastructure, such as harbors, before construction.

Land surveying
Looking through EDM

In the United States, Canada, the United Kingdom and most Commonwealth countries land surveying is considered to be a separate and distinct profession. Land surveyors are not considered to be engineers, and have their own professional associations and licensing requirements. The services of a licensed land surveyor are generally required for boundary surveys (to establish the boundaries of a parcel using its legal description) and subdivision plans (a plot or map based on a survey of a parcel of land, with boundary lines drawn inside the larger parcel to indicate the creation of new boundary lines and roads), both of which are generally referred to as Cadastral surveying. They collect data on important geological features below and on the land.

BLM cadastral survey marker from 1992 in San Xavier, Arizona.
Construction surveying

Construction surveying is generally performed by specialized technicians. Unlike land surveyors, the resulting plan does not have legal status. Construction surveyors perform the following tasks:

  • Surveying existing conditions of the future work site, including topography, existing buildings and infrastructure, and underground infrastructure when possible;
  • "lay-out" or "setting-out": placing reference points and markers that will guide the construction of new structures such as roads or buildings;
  • Verifying the location of structures during construction;
  • As-Built surveying: a survey conducted at the end of the construction project to verify that the work authorized was completed to the specifications set on plans.

Transportation engineering

[edit]

Transportation engineering is concerned with moving people and goods efficiently, safely, and in a manner conducive to a vibrant community. This involves specifying, designing, constructing, and maintaining transportation infrastructure which includes streets, canals, highways, rail systems, airports, ports, and mass transit. It includes areas such as transportation design, transportation planning, traffic engineering, some aspects of urban engineering, queueing theory, pavement engineering, Intelligent Transportation System (ITS), and infrastructure management.

Municipal or urban engineering

[edit]
The engineering of this roundabout in Bristol, England, attempts to make traffic flow free-moving
Lake Chapultepec

Municipal engineering is concerned with municipal infrastructure. This involves specifying, designing, constructing, and maintaining streets, sidewalks, water supply networks, sewers, street lighting, municipal solid waste management and disposal, storage depots for various bulk materials used for maintenance and public works (salt, sand, etc.), public parks and cycling infrastructure. In the case of underground utility networks, it may also include the civil portion (conduits and access chambers) of the local distribution networks of electrical and telecommunications services. It can also include the optimization of waste collection and bus service networks. Some of these disciplines overlap with other civil engineering specialties, however municipal engineering focuses on the coordination of these infrastructure networks and services, as they are often built simultaneously, and managed by the same municipal authority. Municipal engineers may also design the site civil works for large buildings, industrial plants or campuses (i.e. access roads, parking lots, potable water supply, treatment or pretreatment of waste water, site drainage, etc.)

Water resources engineering

[edit]
Hoover Dam

Water resources engineering is concerned with the collection and management of water (as a natural resource). As a discipline, it therefore combines elements of hydrology, environmental science, meteorology, conservation, and resource management. This area of civil engineering relates to the prediction and management of both the quality and the quantity of water in both underground (aquifers) and above ground (lakes, rivers, and streams) resources. Water resource engineers analyze and model very small to very large areas of the earth to predict the amount and content of water as it flows into, through, or out of a facility. However, the actual design of the facility may be left to other engineers.

Hydraulic engineering concerns the flow and conveyance of fluids, principally water. This area of civil engineering is intimately related to the design of pipelines, water supply network, drainage facilities (including bridges, dams, channels, culverts, levees, storm sewers), and canals. Hydraulic engineers design these facilities using the concepts of fluid pressure, fluid statics, fluid dynamics, and hydraulics, among others.

The Falkirk Wheel in Scotland

Civil engineering systems

[edit]

Civil engineering systems is a discipline that promotes using systems thinking to manage complexity and change in civil engineering within its broader public context. It posits that the proper development of civil engineering infrastructure requires a holistic, coherent understanding of the relationships between all of the crucial factors that contribute to successful projects while at the same time emphasizing the importance of attention to technical detail. Its purpose is to help integrate the entire civil engineering project life cycle from conception, through planning, designing, making, operating to decommissioning.[30][31]

See also

[edit]
  • Architectural engineering
  • Engineering drawing
  • Geological Engineering
  • Geomatics engineering
  • Glossary of civil engineering
  • Index of civil engineering articles
  • List of civil engineers
  • List of engineering branches
  • List of Historic Civil Engineering Landmarks
  • Macro-engineering
  • Railway engineering
  • Site survey

Associations

[edit]
  • American Society of Civil Engineers
  • Canadian Society for Civil Engineering
  • Chartered Institution of Civil Engineering Surveyors
  • Council for the Regulation of Engineering in Nigeria
  • Earthquake Engineering Research Institute
  • Engineers Australia
  • European Federation of National Engineering Associations
  • International Federation of Consulting Engineers
  • Indian Geotechnical Society
  • Institution of Civil Engineers
  • Institution of Structural Engineers
  • Institute of Engineering (Nepal)
  • International Society of Soil Mechanics and Geotechnical Engineering
  • Institution of Engineers, Bangladesh
  • Institution of Engineers (India)
  • Institution of Engineers of Ireland
  • Institute of Transportation Engineers
  • Japan Society of Civil Engineers
  • Pakistan Engineering Council
  • Philippine Institute of Civil Engineers
  • Transportation Research Board

References

[edit]
  1. ^ "History and Heritage of Civil Engineering". American Society of Civil Engineers. Archived from the original on 16 February 2007. Retrieved 8 August 2007.
  2. ^ "What is Civil Engineering". Institution of Civil Engineers. 14 January 2022. Retrieved 15 May 2017.
  3. ^ a b "What is Civil Engineering?". Canadian Society for Civil Engineering. Archived from the original on 12 August 2007. Retrieved 8 August 2007.
  4. ^ a b "Civil engineering". Encyclopædia Britannica. Retrieved 9 August 2007.
  5. ^ "Working in the Public Sector Versus Private Sector for Civil Engineering Professionals". The Civil Engineering Podcast. Engineering Management Institute. 5 June 2019.
  6. ^ Baveystock, Nick (8 August 2013). "So what does a civil engineer do, exactly?". The Guardian. Retrieved 11 September 2020.
  7. ^ Saouma, Victor E. "Lecture Notes in Structural Engineering" (PDF). University of Colorado. Archived from the original (PDF) on 19 April 2011. Retrieved 2 November 2007.
  8. ^ Colebrook, Henry Thomas (1817). Algebra: with Arithmetic and mensuration. London.
  9. ^ Murray, Peter (1986). The Architecture of the Italian Renaissance. Knopf Doubleday. ISBN 0-8052-1082-2.[page needed]
  10. ^ Mays, L. (2010). Ancient Water Technologies. Springer. p. 4. ISBN 978-90-481-8631-0.
  11. ^ a b Oakes, William C.; Leone, Les L.; Gunn, Craig J. (2001). Engineering Your Future. Great Lakes Press. ISBN 978-1-881018-57-5.
  12. ^ Dirección General de Obras Públicas Spain (1856). Memoria sobre el estado de las obras públicas en España en 1856 presentada al excmo. sr. Ministro de Fomento por la Dirección General de Obras Públicas. Madrid: National Press.
  13. ^ "Our history". Institution of Civil Engineers. 2 December 2015. Retrieved 12 April 2018.
  14. ^ "Institution of Civil Engineers' website". Retrieved 26 December 2007.
  15. ^ "Norwich University Legacy Website". Archived from the original on 6 July 2014. Retrieved 15 December 2008.
  16. ^ Griggs, Francis E Jr. "Amos Eaton was Right!". Journal of Professional Issues in Engineering Education and Practice, Vol. 123, No. 1, January 1997, pp. 30–34.
  17. ^ "RPI Timeline". Archived from the original on 2 July 2014. Retrieved 14 September 2007.
  18. ^ "Nora Stanton Blatch Barney". Encyclopædia Britannica Online. Retrieved 8 October 2010.
  19. ^ ,"Cite Postgrad". Archived from the original on 6 November 2008.
  20. ^ "Why Should You Get Licensed?". National Society of Professional Engineers. Archived from the original on 4 June 2005. Retrieved 11 August 2007.
  21. ^ "Engineers Act". Quebec Statutes and Regulations (CanLII). Archived from the original on 5 October 2006. Retrieved 11 August 2007.
  22. ^ "Ethics Codes and Guidelines". Online Ethics Center. Archived from the original on 2 February 2016. Retrieved 11 August 2007.
  23. ^ "Singapore's Circle Line criminal trial started". New Civil Engineer. Retrieved 16 November 2013.
  24. ^ Chen, W-F; Scawthorn, C. (2003), "Chapter 2", Earthquake Engineering Handbook, CRC Press, ISBN 0-8493-0068-1
  25. ^ a b Mitchell, James Kenneth (1993). Fundamentals of Soil Behavior (2nd ed.). John Wiley and Sons. pp. 1–2.
  26. ^ Shroff, Arvind V.; Shah, Dhananjay L. (2003). Soil Mechanics and Geotechnical Engineering. Taylor & Francis. pp. 1–2.
  27. ^ "Geotechnical/Geological Engineering" (PDF). Professional Careers in the Mineral Industry. The Australasian Institute of Mining and Metallurgy. Archived (PDF) from the original on 20 July 2008. Retrieved 30 May 2018.
  28. ^ "Site Development and Planning". Nobis Group. Retrieved 7 September 2020.
  29. ^ Narayanan, R; Beeby, A (2003). Introduction to Design for Civil Engineers. London: Spon.
  30. ^ Labi, Samuel (2014). Introduction to Civil Engineering Systems: A Systems Perspective to the Development of Civil Engineering Facilities. John Wiley. ISBN 978-0-470-53063-4.
  31. ^ Blockley, David; Godfrey, Patrick (2017). Doing it Differently: Systems for Rethinking Infrastructure (2nd ed.). London: ICE Publications. ISBN 978-0-7277-6082-1.

Further reading

[edit]
  • Blockley, David (2014). Structural Engineering: a very short introduction. New York: Oxford University Press. ISBN 978-0-19-967193-9.
  • Chen, W.F.; Liew, J.Y. Richard, eds. (2002). The Civil Engineering Handbook. CRC Press. ISBN 978-0-8493-0958-8.
  • Muir Wood, David (2012). Civil Engineering: a very short introduction. New York: Oxford University Press. ISBN 978-0-19-957863-4.
  • Ricketts, Jonathan T.; Loftin, M. Kent; Merritt, Frederick S., eds. (2004). Standard handbook for civil engineers (5 ed.). McGraw Hill. ISBN 978-0-07-136473-7.
[edit]
  • The Institution of Civil Engineers
  • Civil Engineering Software Database
  • The Institution of Civil Engineering Surveyors
  • Civil engineering classes, from MIT OpenCourseWare

 

Geology is a branch of life sciences worried about the Earth and other expensive bodies, the rocks of which they are made up, and the procedures by which they transform over time. The name originates from Old Greek γῆ & gamma; ῆ( g & ecirc;-RRB-'planet'and & lambda;ία o & gamma; ί & alpha;( - logía )'research study of, discourse'. Modern geology significantly overlaps all various other Planet sciences, including hydrology. It is incorporated with Planet system science and global scientific research. Geology defines the framework of the Earth on and below its surface and the procedures that have actually formed that structure. Geologists study the mineralogical structure of rocks in order to get understanding into their history of development. Geology figures out the loved one ages of rocks discovered at a provided location; geochemistry (a branch of geology) determines their outright ages. By incorporating numerous petrological, crystallographic, and paleontological devices, rock hounds are able to chronicle the geological history of the Planet all at once. One facet is to show the age of the Earth. Geology offers proof for plate tectonics, the evolutionary history of life, and the Earth's previous climates. Geologists extensively examine the residential or commercial properties and procedures of Planet and various other earthbound worlds. Rock hounds utilize a wide variety of approaches to comprehend the Earth's structure and evolution, including fieldwork, rock summary, geophysical methods, chemical analysis, physical experiments, and mathematical modelling. In practical terms, geology is essential for mineral and hydrocarbon exploration and exploitation, examining water sources, understanding all-natural hazards, remediating environmental problems, and offering understandings right into previous climate change. Geology is a significant scholastic technique, and it is main to geological engineering and plays an essential role in geotechnical engineering.

.

About United Structural Systems of Illinois

Driving Directions in Cook County


Structural Foundation Repair
42.047538049027, -88.156119464192
Starting Point
United Structural Systems of Illinois, 2124 Stonington Ave, Hoffman Estates, IL 60169, USA
Destination
Open in Google Maps
bowing foundation walls
42.039267787566, -88.08686997854
Starting Point
United Structural Systems of Illinois, 2124 Stonington Ave, Hoffman Estates, IL 60169, USA
Destination
Open in Google Maps
residential waterproofing services
42.093723466038, -88.081975094279
Starting Point
United Structural Systems of Illinois, 2124 Stonington Ave, Hoffman Estates, IL 60169, USA
Destination
Open in Google Maps
permanent foundation repair
42.031516728826, -88.132768551546
Starting Point
United Structural Systems of Illinois, 2124 Stonington Ave, Hoffman Estates, IL 60169, USA
Destination
Open in Google Maps
basement waterproofing Cook County
42.034321541103, -88.17062131774
Starting Point
United Structural Systems of Illinois, 2124 Stonington Ave, Hoffman Estates, IL 60169, USA
Destination
Open in Google Maps
expert foundation repair Hoffman Estates
42.098101823459, -88.111844334127
Starting Point
United Structural Systems of Illinois, 2124 Stonington Ave, Hoffman Estates, IL 60169, USA
Destination
Open in Google Maps
comprehensive foundation repair
42.106569617967, -88.15402951347
Starting Point
United Structural Systems of Illinois, 2124 Stonington Ave, Hoffman Estates, IL 60169, USA
Destination
Open in Google Maps
home foundation protection
42.031060547635, -88.10000117987
Starting Point
United Structural Systems of Illinois, 2124 Stonington Ave, Hoffman Estates, IL 60169, USA
Destination
Open in Google Maps
helical wall tieback anchors
42.014047754937, -88.116603094124
Starting Point
United Structural Systems of Illinois, 2124 Stonington Ave, Hoffman Estates, IL 60169, USA
Destination
Open in Google Maps
Cook County foundation repair
42.077352972693, -88.10039001905
Starting Point
United Structural Systems of Illinois, 2124 Stonington Ave, Hoffman Estates, IL 60169, USA
Destination
Open in Google Maps
Google Maps Location
https://www.google.com/maps/dir/?api=1&origin=42.047989288019,-88.077983664751&destination=United+Structural+Systems+of+Illinois%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=Chicagoland+foundation+crack+repair
Click below to open this location on Google Maps
Google Maps Location
https://www.google.com/maps/dir/?api=1&origin=42.088315487954,-88.183549200532&destination=United+Structural+Systems+of+Illinois%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=Illinois+foundation+solutions
Click below to open this location on Google Maps
Google Maps Location
https://www.google.com/maps/dir/?api=1&origin=42.040062748634,-88.086542269404&destination=United+Structural+Systems+of+Illinois%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=Foundation+Repair+Service
Click below to open this location on Google Maps
Google Maps Location
https://www.google.com/maps/dir/?api=1&origin=42.094120345143,-88.117899390338&destination=United+Structural+Systems+of+Illinois%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=carbon+fiber+wall+reinforcement
Click below to open this location on Google Maps
Google Maps Location
https://www.google.com/maps/dir/?api=1&origin=42.047538049027,-88.156119464192&destination=United+Structural+Systems+of+Illinois%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=Structural+Foundation+Repair
Click below to open this location on Google Maps
Google Maps Location
https://www.google.com/maps/dir/?api=1&origin=42.092599351612,-88.103413988163&destination=United+Structural+Systems+of+Illinois%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=Chicagoland+foundation+crack+repair
Click below to open this location on Google Maps
Google Maps Location
https://www.google.com/maps/dir/?api=1&origin=42.075378204097,-88.162831816366&destination=United+Structural+Systems+of+Illinois%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=structural+foundation+solutions
Click below to open this location on Google Maps
Google Maps Location
https://www.google.com/maps/dir/?api=1&origin=42.074377733434,-88.086262780534&destination=United+Structural+Systems+of+Illinois%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=foundation+settlement+repair
Click below to open this location on Google Maps
Google Maps Location
https://www.google.com/maps/dir/?api=1&origin=42.045957978833,-88.158387263017&destination=United+Structural+Systems+of+Illinois%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=residential+waterproofing+services
Click below to open this location on Google Maps
Google Maps Location
https://www.google.com/maps/dir/?api=1&origin=42.054592176062,-88.20960373186&destination=United+Structural+Systems+of+Illinois%2C+2124+Stonington+Ave%2C+Hoffman+Estates%2C+IL+60169%2C+USA&destination_place_id=ChIJ-wSxDtinD4gRiv4kY3RRh9U&travelmode=driving&query=cracked+foundation+repair
Click below to open this location on Google Maps