What is the one thing You Should Do When Your Garage Door Stops Working?

What is the one thing You Should Do When Your Garage Door Stops Working?

Will County

What kind of garage door Opener and Door Do You Have? .


If garage doors stop functioning, it could be a frustrating and inconvenient experience.Whether you're hurrying to work, or trying to pull your car in garage during a downpour or storm, a door that isn't working is the last thing you want to have to deal with.The first step to address the issue is to determine the kind of garage door and opener that you are using, as this will significantly affect your approach to diagnosing and fixing.


Garage doors generally fall into different types based on their appearance and operation.The most commonly used kinds are roll-up, sectional, and tilt-up doors.Sectional doors are made up of panel sections connected with hinges that allow the door to bend when it closes and opens on vertical track.Roll-up doors, commonly found in commercial settings are made from slats that roll up into coils.

Tilt-up doors on the other hand, are a single solid piece that tilts upwards and outwards as it opens.

Importantly, you must identify the kind of garage door opener.The three primary types are chain-drive, belt-drive, and screw-drive openers.Chain-drive openers, which use a metal chain to lift and lower the door, are sturdy and affordable but they are noisy.Belt-drive openers work similarly, but they utilize a rubber belt which makes them quieter and ideal for attached garages.Screw-drive openers move the door by means of a threaded steel rod that provides a balanced balance between noise and cost.


Once you've identified the garage door's type and the opener's model the next step is to conduct a an initial check for typical issues.Ensure that the power source is connected to the opener checking the outlet and breaker.Inspect the manual release cord to be sure that it isn't pulled, which could disconnect the door from the opener.Examine the door's tracks and rollers to see if they have obstructions or damages and remove any debris.

Lubricate moving parts when needed, as lack of lubrication could cause jamming or sticking.

Resetting your opener is a solution to any electronic faults. Read the manual of the opener you're using to determine the precise instructions. Some openers can be reset by pressing one button, while other openers require that the unit not be plugged in and then plugged back in.


In some instances it could be more complex like a damaged spring or a damaged motor which will require expert assistance.Springs are under a lot of tension and are dangerous to repair without the appropriate tools and experience.


If your garage door suddenly stops working or is not working, it's best to consult an expert.

Look for any obstructions or other debris


If your garage door suddenly ceases working, it's extremely frustrating and confusing, especially if it's a part of your daily routine.

One of the first and most useful steps to consider when you are faced by this issue is to check for obstructions or debris.This simple yet effective action is often the most effective way in identifying the issue and returning functionality to the garage door.

Garage doors operate through a system of rollers, tracks, and other moving parts that have to be clear of any obstacles to work smoothly.Over time, dirt, leaves, small stones, or other debris can accumulate on the tracks or become stuck in the rollers.Even small obstacles can stop the door from opening or closing properly.Therefore it is imperative to conduct a thorough examination of these components should be your first step.


Begin by visually examining the tracks on both sides of the door.Look for obvious obstructions or accumulation of debris.If you notice anything unusual like an twig or stone stuck to the track be sure to remove it.

There are times when the problem may not be immediately visible, so it's advisable to run your hands through the track and feel for any unseen obstacles.Ensure that the tracks are aligned properly in addition, as any misalignment could cause the door to become jammed.

Also, inspect the hinges and rollers. These parts should be able to move without a thump. If they are stuck or sticky, this could be caused by rust or grime. Lubricating and cleaning these parts can generally solve the issue.


Be sure to inspect the area surrounding the door. Sometimes, objects within the garage could be moved or fall, thereby blocking its path. Check that the area is free of obstructions and that there are no obstructions that might block the door.


Examine the sensors to determine why the door is not opening after you have removed any obstructions.

The sensors on modern garage doors could malfunction when they're dirty or not aligned correctly.

In conclusion, when confronted with the garage door that abruptly stops working, checking for debris or obstructions is a logical and often successful first step.It takes only a few tools and know-how, but it will save your time, money, as well as the inconvenience of calling a professional for what could be a straightforward fix.By maintaining a clear path and

Inspect the Remote Control and Wall Switch


If your garage door suddenly stops functioning, it can be an unintentional inconvenience that interrupts your regular routine.In such instances there is a natural feeling of that you must solve the problem quickly.One of the initial and most effective steps you should consider is to check the remote control as well as the wall switch.

By checking these components, you avoid costly errors.

First, consider the remote control.This handheld device is your primary tool for operating the garage door without direct physical interaction.Over time, remote controls can experience issues such as drained batteries, signal interference, or even internal damage.Start by replacing the batteries with new ones.It might seem simple, but dead batteries are a common reason for a garage door not responding.If the problem persists after replacing the batteries, try reprogramming the remote according to the manufacturer's instructions.Additionally, ensure that the remote is within the recommended range and that there are no obstructions blocking the signal.


Then, shift your focus towards the wall switch. It is an additional essential component in the garage door's design.

The wall switch is directly linked to the garage door opener and often provides a more reliable way of operation.Inspect the switch for any signs of physical damage, or wear.Sometimes, loose wires or faulty connections can cause the switch to malfunction.If you feel confident doing this, make sure you access the switch's control panel and look for damaged or broken wires.If you find any problems, it may be necessary to call an electrician who is licensed to deal with the issue.

The remote control or wall switch is working, but the door is not yet responding. This could indicate a problem with the garage opener unit or with other parts, like sensors or door tracks.

It is possible to eliminate these issues prior to moving on to more complex troubleshooting.

The final step is to examine the wall switch and remote control when your garage door suddenly stops functioning is a simple and practical approach.By addressing these components first, you'll quickly identify if the issue is in these parts that are easily accessible or if further examination is needed.This initial examination does not only cut down on time, but also gives you confidence that you have taken the appropriate steps to identify the problem correctly.

Manually test the Door Balance


It is frustrating and frustrating when the garage door ceases functioning. Garage doors are a vital part of your home as it provides security, protection against elements, as well as easy access to your car as well as storage.

The first step you must make when confronted by a malfunctioning garage door is to test manually the door balance.This simple yet effective procedure can help diagnose potential issues and prevent further damage to the door or its components.

The equilibrium of a garage door is crucial for its proper functioning.A properly balanced door means that the door opener doesn't have to work harder than is necessary, which reduces the chance of wear and wear and tear on the motor, as well as other parts.An uneven door, however could lead to more serious issues over time, for instance, misalignment or broken springs, or a complete system failure.Therefore, testing the door balance is an essential diagnostic step that can help you determine whether the issue is in the door or the opener mechanism.


Start by disengaging the garage door opener.

The majority of garage doors come with a release mechanism which is located on the red cord or the handle. Once the door has been disconnected from the motor, lift it to waist-high and then release it. A properly balanced door will stay in place or move at a slow pace.

If you find that the door is not properly balanced It is crucial to take care of the issue promptly.Door balance problems are often related to the tension of the springs. It can be dangerous to adjust yourself due to the pressure they're under.It is advised to seek assistance from a professional for adjusting the springs and ensure the door is properly balanced correctly.Doing this not only fixes the immediate problem but also improves the durability and longevity of your garage door system.


In conclusion, manually testing the door's balance is an important first step when your garage door suddenly stops working.

By addressing issues quickly and understanding the importance in addressing the issue, you can make sure that your garage door will function smoothly and safely in the future.

Check the tracks and rollers.

If you're confronted with a garage door that has suddenly stopped to open, your initial instinct is to worry or consider the most complicated technical issues.However it is often the answer is in a straightforward inspection of the tracks and rollers.This crucial check will make a difference in time and expensive repair costs, making it the one factor you must consider when your garage door stops working.


Tracks and rollers are essential elements of the garage door's operation system.The tracks comprise the iron rails that control the door as it opens and closes. The rollers are the small wheels which move along the tracks.

What is the one thing You Should Do When Your Garage Door Stops Working? - COVID-19 pandemic

  1. Sears
  2. golf
  3. signal

These parts are prone to get dirty, wear out or misaligned as time passes. This could cause malfunctions.

Begin by examining the track for any obstructions. Dust, grime and even small debris may accumulate, causing rollers to struggle to travel on the track. Cleaning the tracks with a moist cloth could solve this problem.




What is the one thing You Should Do When Your Garage Door Stops Working? - middle school

  1. Will County
  2. COVID-19 pandemic
  3. middle school
The next thing to do is to examine the alignment of the track. Tracks must be parallel and perfectly straight. If they appear bent, or not in alignment, the door might jam. You can press the wrongly aligned section back into position with a rubber mallet. However, if damage is severe, it's better to call a professional who can realign the tracks correctly.


In addition, checking the rollers are important.Over time, they can get damaged or worn out particularly if made from plastic.

Metal rollers with bearings are more durable and allow for an easier operation.

Furthermore, lubrication is a essential role in maintaining the smooth movement of the tracks and rollers.Applying an oil based on silicone could decrease friction and reduce wear.Make sure to lubricate every moving part, including springs and hinges to ensure that your garage door is operating efficiently.


By ensuring that these components are properly aligned and lubricated, it is possible to bring back the garage door's complete functionality.

Monitoring and regularly maintaining these components will help prevent any malfunctions from occurring in the future. This will extend the lifespan of the garage system.

Look for obvious damage or wear

When garage doors stop working, it's both inconvenient and frustrating, particularly if you are going out or trying to make sure your home is safe for evening.While there could be various reasons behind the issue, one of the most effective and quick steps to take is to look for visible damage or wear.This first inspection will usually determine the root of the issue, allowing an immediate and effective solution.


The garage door is a complex system that is made up of a variety of parts, like springs cables as well as rollers and tracks all of which play an important role in the seamless operation.Over time, these components will wear out due to regular use and exposure to environmental factors.

If you conduct a thorough visual examination, you will be able to identify any obvious signs of damage that could be creating problems for the door.

Begin by inspecting the springs, which are crucial to the lifting and lowering of the door.Look for signs of damage, rust, or misalignment.A broken or worn-out spring could make the door inoperable, therefore it is imperative to fix the problem promptly.Next take a look at the cables and inspect whether there are broken or frayed strings that could hinder the door's movement.Similarly, inspect the tracks and rollers for any damage, dents or obstructions that might be hindering the door's path.


Another aspect to be focused on is the door itself.Look for bents, dents, or warping that might affect its balance and alignment.Pay close attention to the weather stripping located at the top of the door as a damaged strip can cause the door to not seal properly.

Additionally, ensure that the sensors of the door are clean and aligned since misalignment, dirt or dirt can hinder their work and make the door stop working.

A visual inspection is beneficial however, you must keep in mind that not every issue is instantly apparent. If you do not see any obvious indications of damage or wear, you might need to speak with a professional to determine the problem.


When confronted by a malfunctioning garage door, searching for obvious wear or damage is the initial step.This technique not only aids to identify the issue fast but also allows you to take the necessary action in order to return the door to working properly.

Being proactive and vigilant You can ensure the longevity and security of the garage door.

Assess the Springs and Cables

When your garage door stops working it could be frustrating and inconvenient.One of the most vital actions you can take in this instance is to look at the springs and cables.These elements are essential for the proper functioning of your garage door and problems caused by them are usually the cause of a malfunctioning door.


The springs play an important role in the performance and smoothness of your garage by counterbalancing the weight. There are two main types of springs: extension and torsion. Torsion springs are placed above the garage, and they twist to store energy. Extension springs however are installed on between the doors and are stretched to supply the required force.

The springs could be worn out with time, break or lose tension causing problems in operation.

Similarly, cables are essential as they work in tandem with the springs to lift and lower the door.They are typically made of steel, and are made to withstand high tension.However cables can suffer from wear and tear, fray, or snap due to the enormous pressure they're under.A broken cable could cause the door to become unstable or even inoperable.


If you're not sure if the cables or springs require to be adjusted, visually inspect them. Check for indications of wear or rust.


It's vital to focus on the safety aspect when working with garage door parts.

Cables and springs are under extreme tension and could cause serious injuries when mishandled.If you're not familiar with garage door repairs, it's wise to seek out an experienced technician.They have the necessary tools and knowledge to properly repair or replace these components to ensure your garage door operates properly and securely.

In conclusion, when your garage door suddenly stops working, assessing the springs and cables is a key step in diagnosing the problem.Understanding their role and potential issues can help you determine whether a simple adjustment is needed or if professional intervention is required.Taking prompt action not only restores functionality but also ensures the safety and longevity of your garage door system.

You Should Call a Professional Technician


When your garage door suddenly stops functioning you may be unable to continue your day or even create a security risk to your home.

It is tempting to pick up a toolbox to try a fix at home however it is better to seek out an expert. This will not only guarantee your safety, but provide a long-lasting and more effective solution.

Garage doors are complex systems composed of various components such as springs, cables, tracks, and electronic parts.Each of these elements plays a crucial role in the door's operation, and a malfunction in any part can cause the entire system to fail.Without proper knowledge and experience, attempting to fix these issues can be dangerous.For instance, garage door springs are under high tension and can cause severe injury if handled improperly.Professional technicians are trained to deal with these risks safely, using the right tools and techniques to handle repairs.


Additionally, a professional technician is a skilled professional with experience and knowledge that a layperson does not possess.

They can quickly diagnose the issue and identify whether it's a minor problem, like a misaligned track, or something more serious, like a broken spring.This expertise not only saves you time but also prevents the potential for further damage that can occur with incorrect handling.Professionals also have access to high-quality parts and can ensure that replacements match the specifications of your existing garage door system, leading to better functionality and longevity.

A professional technician can also be economical in the long-term. Although a DIY option may appear more affordable at first but, it could end up resulting in expensive and costly repairs in the future.

What is the one thing You Should Do When Your Garage Door Stops Working? - COVID-19 pandemic

  1. leadscrew
  2. sensor
  3. judiciary

Many technicians also offer guarantees on their work that gives you peace of mind knowing that should something go wrong, you're covered.

A professional can save you significant time and hassle.Trying to grasp the complexities of garage door mechanics and purchase the correct tools, and execute an repair can take hours or even days.In contrast, a technician can usually resolve the issue quickly, and allow you to resume your daily routine without any unnecessary delays.


The desire to repair the garage door yourself is strong. But, calling professionals is the best solution, most reliable and safest choice. Their expertise as well as access to top quality replacement parts and their capacity to carry out quick and precise repairs ensure that your garage will run well and safeguarding your home.

Citations and other links

Village of Mokena
The gable bank barn at the historic McGovney–Yunker Farmstead
The gable bank barn at the historic McGovney–Yunker Farmstead
Flag of Village of Mokena
Official seal of Village of Mokena
Motto(s): 
Planned Progress, Pleasant Living
Location of Mokena in Will County, Illinois.
Location of Mokena in Will County, Illinois.
Location of Illinois in the United States
Location of Illinois in the United States
Coordinates: 41°32′04″N 87°52′37″W / 41.534414°N 87.876873°W / 41.534414; -87.876873
CountryUnited States
StateIllinois
CountyWill
TownshipFrankfort, New Lenox
Incorporated1880
Government
 • TypeVillage
Area
 • Total8.68 sq mi (22.47 km2)
 • Land8.68 sq mi (22.47 km2)
 • Water0.00 sq mi (0.00 km2)
Population
 (2020)
 • Total19,887
 • Density2,292.19/sq mi (885.05/km2)
Time zoneUTC-6 (CST)
 • Summer (DST)UTC-5 (CDT)
ZIP code
60448[2]
Area codes708
FIPS code17-49854
Websitehttp://www.mokena.org/

Mokena (/mˈkinə/ moh-KEE-nuh) is a village in Will County, Illinois, United States. It is a southwest suburb of Chicago. The population was 19,887 at the 2020 census. The Census Bureau's 2019 estimate found that the population had increased to 20,159.[3]

Etymology

[edit]

Mokena is a name apparently derived from a Native American language meaning "turtle".[4] While the particular language from which the name originates is not documented, likely candidates are Anishinaabemowin, whose word for "snapping turtle" is mikinaak,[5] and its close sister language Potawatomi, in which the same animal is called mkenak.[6] Both languages were once spoken in the area now occupied by the town.

Mokena is located at 41°32′4″N 87°52′37″W / 41.53444°N 87.87694°W / 41.53444; -87.87694.[7] According to the 2010 census, Mokena has an area of 8.893 square miles (23.03 km2), of which 8.89 square miles (23.02 km2) (or 99.97%) is land and 0.003 square miles (0.01 km2) (or 0.03%) is water.[8] It is bordered by Tinley Park to the northeast, Orland Park to the north, Homer Glen to the northwest, Frankfort to the south and New Lenox to the west.

Education

[edit]

Elementary school services are provided by one of four school districts: Mokena School District 159, New Lenox School District 122, Frankfort School District 157C, and Summit Hill School District 161. Schools within District 159 include MES (Mokena Elementary School), MIS (Mokena Intermediate School), and MJHS (Mokena Junior High School). Mokena is served by Lincoln-Way Community High School District 210; students living in districts 159 or 122 attend Lincoln-Way Central High School, and students living in districts 157C or 161 attend Lincoln-Way East High School. Higher education is provided at Joliet Junior College, the nation's first public community college, and at Rasmussen College.

Demographics

[edit]
Historical population
CensusPop.Note
1880522
1890364−30.3%
1900281−22.8%
191035927.8%
192047532.3%
193056218.3%
194065716.9%
195090337.4%
19601,33247.5%
19701,64323.3%
19804,578178.6%
19906,12833.9%
200014,583138.0%
201018,74028.5%
202019,8876.1%
U.S. Decennial Census[9]

As of the census[10] of 2010, there were 18,740 people, 6,358 households, and 5,120 families residing in the village. The population density was 2,432.4 inhabitants per square mile (939.2/km2). There were 4,848 housing units at an average density of 808.6 per square mile (312.2/km2). The racial makeup of the village was 94.5% White, 1.3% African American, 0.01% Native American, 2.0% Asian, 0.01% Pacific Islander, 0.9% from other races, and 0.63% from two or more races. Hispanic or Latino of any race were 4.8% of the population.

As of the census of 2000, there were 4,703 households, out of which 48.5% had children under the age of 18 living with them, 73.7% were married couples living together, 7.3% had a female householder with no husband present, and 16.8% were non-families. 14.0% of all households were made up of individuals, and 3.3% had someone living alone who was 65 years of age or older. The average household size was 3.10 and the average family size was 3.46.

In the village, the population was spread out, with 32.4% under the age of 18, 7.1% from 18 to 24, 32.7% from 25 to 44, 21.5% from 45 to 64, and 6.2% who were 65 years of age or older. The median age was 34 years. For every 100 females, there were 101.5 males. For every 100 females age 18 and over, there were 97.3 males.

The median family income is $82,596 and the median income for a household is $91,817. Males had a median income of $58,226 versus $31,522 for females. The per capita income for the village was $31,944. As of 2008, the median house value was $350,130, up from $211,300 in 2000.[11]

About 0.7% of families and 1.0% of the population were below the poverty line, including 0.6% of those under age 18 and 4.6% of those age 65 or over.

Transportation

[edit]

The Village of Mokena is serviced by the Metra rail service Rock Island District. Mokena has two commuter rail stations, Hickory Creek and Front Street, providing service to downtown Chicago's LaSalle Street Station, connecting with components of the Chicago Transit Authority. Mokena is also served by I-80, which runs along its northern border. Through I-80 commuters have convenient access to I-355 (Veteran's Memorial Tollway) and I-57. The main north–south thoroughfares are US Route 45 (LaGrange Rd) and Wolf Rd. The main east–west thoroughfares are 191st St, LaPorte Rd., and US Route 30 (Lincoln Highway). Rail freight traffic travels along both the Metra RI District Railway (Metra RI) and the Canadian National Railway (CN). The CN tracks run east/west along Mokena's southern boundary, while the Metra Rock Island District (Metra) tracks approximately bisect the town in a northeastern/southwestern direction.

Notable people

[edit]

References

[edit]
  1. ^ "2020 U.S. Gazetteer Files". United States Census Bureau. Retrieved March 15, 2022.
  2. ^ "Mokena IL ZIP Code". zipdatamaps.com. 2023. Retrieved January 26, 2023.
  3. ^ "2010 Census Interactive Population Search". Archived from the original on June 15, 2016. Retrieved December 6, 2017.
  4. ^ Gannett, Henry (1905). The Origin of Certain Place Names in the United States. U.S. Government Printing Office. p. 211.
  5. ^ "The Ojibwe People's Dictionary". ojibwe.lib.umn.edu. Retrieved January 7, 2021.
  6. ^ "Potawatomi Language Dictionary - View Word". potawatomidictionary.com. Retrieved January 7, 2021.
  7. ^ "US Gazetteer files: 2010, 2000, and 1990". United States Census Bureau. February 12, 2011. Retrieved April 23, 2011.
  8. ^ "G001 - Geographic Identifiers - 2010 Census Summary File 1". United States Census Bureau. Archived from the original on February 13, 2020. Retrieved December 19, 2015.
  9. ^ "Census of Population and Housing". Census.gov. Retrieved June 4, 2015.
  10. ^ "U.S. Census website". United States Census Bureau. Retrieved January 31, 2008.
  11. ^ "Mokena, Illinois (IL 60448) profile: population, maps, real estate, averages, homes, statistics, relocation, travel, jobs, hospitals, schools, crime, moving, houses, news, sex offenders". www.city-data.com.
  12. ^ "Boers: Leaving Home Produces Rush Of Vivid Memories". December 23, 2014. Retrieved January 4, 2020.
  13. ^ Sherdog.com. "Jason Guida MMA Stats, Pictures, News, Videos, Biography - Sherdog.com". Sherdog. Retrieved January 4, 2020.
  14. ^ 'Don C. Hall, 87, Veteran Show Trouper, Dies,' Stevens Point Daily Journal, October 29, 1953, pg. 15
  15. ^ "Ron Kittle: Renaissance Man | Chicagoly Magazine". Archived from the original on June 22, 2019. Retrieved June 22, 2019.
  16. ^ Sotonoff, Jamie (August 30, 2011). "Denise Richards: Suburban upbringing kept me grounded". Daily Herald.
[edit]

Sectional garage door
Up-and-over garage door
Torsion springs, drums, cables, end bearing plates, center bearing plate and rolloers (wheels) all hardware needed for a functional garage door.
Garage Door Hardware

A garage door is a large door to allow egress for a garage that opens either manually or by an electric motor (a garage door opener). Garage doors are frequently large enough to accommodate automobiles and other vehicles. The operating mechanism is usually spring-loaded or counterbalanced to offset the door's weight and reduce the human or motor effort required to operate the door. Less commonly, some garage doors slide or swing horizontally. Doors are made of wood, metal, or fiberglass, and may be insulated to prevent heat loss.

Description

[edit]
An electric garage door opener operates on the center track

A typical version of an overhead garage door used in the past would have been built as a one-piece panel.[1] The panel was mounted on each side with an unequal parallelogram-style hinge lifting mechanism. Newer versions of overhead garage doors are now generally built from several panels hinged together that roll along a system of tracks guided by rollers.[1] The weight of the door may be 400 lb (180 kg) or more but is balanced by either a torsion spring system or a pair of extension springs.[2] A garage door opener is controlled motorized mechanism for opening garage doors adds convenience, safety, and security often used with a remote or a button on wall.[3]

History

[edit]

The history of the garage door could date back to 450 BC when chariots were stored in gatehouses, but in the United States, they arose around the start of the 20th century. As early as 1902, American manufacturers—including Cornell Iron Works—published catalogs featuring a "float over door." Evidence of an upward-lifting garage door can be found in a catalog in 1906.[4]

Types

[edit]

Single panel garage doors

[edit]
jamb type hardware
one piece track type hardware

Single-panel doors are constructed from one monolithic panel. A single panel door swings up and overhead with a hinge on each side (jamb-type hardware) to a fully open position from the closed position. A disadvantage of monolithic panel doors is that the swing-up arc of the door occurs partially outside the garage. This means a vehicle must stop and park several feet in front of the door to avoid being hit by the garage door when it is opened.

Single panel doors can also be installed with (one piece track type hardware) that folds the door back with a single horizontal track on each side (mounted at the top of the wood frame) and a roller mounted to the top of the door on each side. A hinge on each side that attaches to the bottom of each side of the garage door. Using track hardware, a car can be parked much closer to the door, as the door is positioned entirely inside the garage door header when in the open position. Track-type hardware has less arc when raising and lowering the garage door than jamb-type hardware.[citation needed]

Sectional garage doors

Sectional doors usually have three to eight panels and slide up and overhead. Sectional doors occupy the same internal garage space as a monolithic door. Sectional doors have two advantages over single-panel monolithic doors:

  • Sectional doors do not require any space outside the garage to open. A vehicle may park very close to the garage before opening the door.
  • Each panel of a sectional door has its connection to the door track. This increases reliability and robustness compared to monolithic doors, which have only a few track connections for the whole panel.

Garage doors can be made of many materials, but steel, aluminum, wood, copper, glass, and vinyl (polyethylene) are the most popular materials. Some manufacturers incorporate foamed-in-place polyurethane insulation within the monolithic panel and sectional garage doors.

The side sliding sectional door[5]

  • A lot of space under the garage ceiling.
  • Can use the entire ceiling of the garage.
  • Fast access to the garage

Roller doors

[edit]
Detail of roller door mechanism
Industrial tents with rollup overhead doors

Roller doors (sometimes called "sheet doors") are usually constructed of corrugated steel. They evolved from cover window and door coverings.[4] Other materials can be used (e.g., transparent corrugated fiberglass) where strong impact resistance is not required. Corrugations give the door strength against impacts. A typical single-car garage roller door has a preloaded spring inside the rolling mechanism. The spring reduces the effort required to open the door. Oversized roller doors in commercial premises are not sprung (except in the US), and a manual pulley and chain system or a geared motor is used to raise and lower (roll up and roll down) the door. Roller doors cannot be effectively insulated.

In the UK (and other parts of the EU), 'insulated' roller garage doors are available, using an aluminum lathe filled with polyurethane foam for thermal and acoustic insulation.

Concerning thermal insulation, the roller door has a typical insulation R-value of 4.9 to 5.2. A sheet steel garage door has a typical insulation R-value of 0.5 to 2.7.

An application that needs more thermal insulation typically uses a foam-filled sectional garage door, which provides typical insulation R-values of 6.1 to 6.4.

Garage door materials

[edit]
  • Aluminum garage doors are usually found in commercial settings and are uncommon for residential ones. Aluminum is typically only used for full-view garage doors (doors that are made up of glass sections divided by aluminum stiles). Aluminum doors are rust-proof and low maintenance.
  • Fiberglass and vinyl garage doors are composite units, combining a steel core behind a fiberglass or vinyl skin. They also have polyurethane insulated base sections or other types of foam insulation. These premium doors can match steel garage doors and be a realistic imitation of wood (namely fiberglass units), but they may be more expensive than steel units. Fiberglass doors are commonly used near an ocean, where salt water can ruin regular steel doors.
  • Steel doors have a variety of sizes and styles, provide strength and security, are cost-competitive, and may have optional insulating value. Extra strength is available with two or three layers of galvanized steel with a low gauge number (0.6 - 0.7 mm steel panels).[6]
  • Wood garage doors offer aesthetic appeal, but they are high maintenance and may be expensive. Low-priced wood garage doors may warp and break easily.

Steel stamped construction

[edit]
Sectional-type steel with exterior cladding overhead garage doors in the style of old carriage house doors

A common material for a new garage door is a steel sheet formed or stamped to look like a raised panel wooden door. Steel doors are available in uninsulated, insulated, and a three-layer door, also known as a sandwich-style door. A design mimicking carriage house doors has become popular since the early 2000s, and many manufacturers clad the exterior of a steel door with composite, vinyl boards, or other trim to give it the appearance of wood.

Insulation

[edit]

In situations involving residential attached garages, the insulating value and the energy efficiency of a garage door are essential to avoid overheating and freezing problems, as well as for comfort and energy savings.

Torsion spring lift mechanism

[edit]

A torsion spring counterbalance system consists of one or two tightly wound-up springs on a steel shaft with cable drums at both ends. The apparatus mounts on the header wall above the garage door and has three supports: a center bearing plate with a steel or nylon bearing and two end bearing plates at both ends. The springs consist of a steel wire with a stationary cone at one end and a winding cone at the other. The stationary cone is attached to the center bearing plate. The winding cone consists of holes every 90 degrees for winding the springs and two set screws to secure the springs to the shaft. Steel counterbalance cables run from the roller brackets at the bottom corners of the door to a notch in the cable drums. When the door is raised, the springs unwind, and the stored tension lifts the door by turning the shaft, thus turning the cable drums and wrapping the cables around the grooves on the cable drums. When the door is lowered, the cables unwrap from the drums, and the springs are rewound to full tension.

Life of torsion spring

[edit]

Garage door manufacturers typically produce doors fitted with torsion springs that provide a minimum of 10,000 to 15,000 cycles and are guaranteed for three to seven years. One cycle is a single opening and closing sequence. Most manufacturers offer a 30,000-cycle spring. However, it is essential to remember that if the garage door's weight is increased by adding glass, additional insulation, or even several coats of paint, the torsion spring's life may be significantly reduced. Additionally, springs in highly humid environments, such as coastal regions tend to have a significantly shorter cycle life, due to the corrosive cracking.

Other factors like poor garage door maintenance, loose tracks, or components shorten torsion spring life. Owners are advised to avoid applying grease to garage door tracks because that makes the wheels "skate" in the track instead of turning on their bearings. Only bearings, hinges, and spring wire require lubricant.

Extension spring lift mechanism

[edit]

An extension spring counterbalance system consists of a pair of stretched springs running parallel to the horizontal tracks. The springs lift the door through a system of pulleys and counterbalance cables running from the bottom corner brackets through the pulleys. When the door is raised, the springs contract, thus lifting the door as the tension is released. Typically, these springs are made of 11 gauge (3 mm) galvanized steel, and the lengths of these springs are based on the height of the garage door in question. Their lifting weight capacity can best be identified by the color that is painted on the ends of the springs.

Maintenance

[edit]

Maintenance of garage doors is described in the manufacturer's instructions and consists of periodic checks for correct operation, visual inspection of parts, and lubrication. [7][8]

Safety

[edit]

Garage doors can cause injury and property damage (including expensive damage to the door itself) in several ways. The most common causes of injury from garage door systems include falling doors, pinch points, improperly adjusted opener force settings, and safety eyes, attempts at do-it-yourself repair without the proper knowledge or tools, and uncontrolled release of spring tension (on torsion spring systems).

A garage door with a broken spring or the wrong strength can fall. Because the effective mass of the door increases as the garage door sections transfer from the horizontal to vertical door tracks, a falling garage door accelerates rapidly. A free-falling garage door can cause severe injury or death.

The sections and rollers on garage doors represent a significant pinch hazard. Children should never be allowed near a moving garage door for this reason. On manually operated garage doors, handles should be installed vertically to promote "vertical orientation of the hand".

Mechanical garage door openers can pull or push a garage door with enough force to injure or kill people and pets if they become trapped. Modern openers have “force settings” that make the door reverse if it encounters too much resistance while closing or opening. Any garage door opener sold in the United States after 1992 requires safety eyes—sensors that prevent the door from closing if obstructed. Force settings should cause a door to stop or reverse on encountering more than approximately 20 lb (10 kg) of resistance. Safety eyes should be installed a maximum of six inches above the ground. Many garage door injuries, and nearly all garage door-related property damage, can be avoided by following these precautions.[9]

Certain parts, especially springs, cables, bottom brackets, and spring anchor plates, are under extreme tension. Injuries can occur if parts under tension are removed.

Extension spring systems should always be restrained by a safety cable that runs through the middle of the spring, tying off to a solid point at the rear and front of the horizontal door track. The safety cable prevents hazards to bystanders when a spring, pulley, or cable breaks under tension and makes the system relatively safe.

Torsion spring systems can be hazardous as they are always under tension and release energy when the spring fails. Severe injury or death can be caused by the projectile pieces of a failed torsion spring. Many people have been injured or killed trying to adjust torsion springs, and special training and procedures are required to modify a torsion spring safely; it is a job for a professional, not a homeowner or DIYer.

References

[edit]
  1. ^ a b Hamilton, Gene; Hamilton, Katie (2004). Do it right the first time: what every homeowner needs to know before the work begins. Innova Publishers. p. 154. ISBN 9780974937359. Retrieved 2015-07-19.
  2. ^ Ask the Family handy-man. Reader's Digest. 1999. p. 138. ISBN 9780762101429. Retrieved 2015-07-19. garage door can weigh 400 pounds or more; they only seem light because the springs balance the weight as you lift the door.
  3. ^ Day, Richard (July 1982). "Tips from a pro: how to install a garage-door opener". Popular Science. Vol. 221, no. 1. pp. 91–93. Retrieved 2015-07-19.
  4. ^ a b Winterton, Deanne (2012-02-21). "History of the Garage Door". Amazines.com. Retrieved 2015-07-19.
  5. ^ Deziel, Chris (10 October 2023). "Are Sliding Garage Doors the Best Option for You?". Family Handyman. Retrieved 3 February 2024.
  6. ^ "DASMA Metal Gauge Chart Technical Data Sheet #154" (PDF). DASMA. Archived from the original (PDF) on 2014-08-02. Retrieved 2015-07-19.
  7. ^ "DASMA Door and Access Systems Manufacturers Association". Dasma.com. 1993-01-01. Archived from the original on 2012-10-28. Retrieved 2012-11-04.
  8. ^ "DASMA Door and Access Systems Manufacturers Association". Dasma.com. Archived from the original on 2012-08-26. Retrieved 2012-11-04.
  9. ^ "How Important Are Garage Door Safety Sensors". rsvallejo.com. Retrieved 2023-04-06.
[edit]

Media related to Garage doors at Wikimedia Commons


A residential garage door opener. The motor is in the box on the upper-right.

A garage door opener is a motorized device that opens and closes a garage door controlled by switches on the garage wall. Most also include a handheld radio remote control carried by the owner, which can be used to open and close the door from a short distance.

The electric opener

[edit]

The electric overhead garage door opener was invented by C.G. Johnson in 1926 in Hartford City, Indiana.[1] Electric Garage Door openers did not become popular until Era Meter Company of Chicago offered one after World War II where the overhead garage door could be opened via a key pad located on a post at the end of the driveway or a switch inside the garage.[2]

As in an elevator, the electric motor does not provide most of the power to move a heavy garage door. Instead, most of door's weight is offset by the counterbalance springs attached to the door. (Even manually operated garage doors have counterbalances; otherwise, they would be too heavy for a person to open or close them.) In a typical design, torsion springs apply torque to a shaft, and that shaft applies a force to the garage door via steel counterbalance cables. The electric opener provides only a small amount of force to control how far the door opens and closes. In most cases, the garage door opener also holds the door closed in place of a lock.

The typical electric garage door opener consists of a power unit that contains the electric motor. The power unit attaches to a track. A trolley connected to an arm that attaches to the top of the garage door slides back and forth on the track, thus opening and closing the garage door. The trolley is pulled along the track by a chain, belt, or screw that turns when the motor is operated. A quick-release mechanism is attached to the trolley to allow the garage door to be disconnected from the opener for manual operation during a power failure or in case of emergency. Limit switches on the power unit control the distance the garage door opens and closes once the motor receives a signal from the remote control or wall push button to operate the door.[3]

The entire assembly hangs above the garage door. The power unit hangs from the ceiling and is located towards the rear of the garage. The end of the track on the opposite end of the power unit attaches to a header bracket that is attached to the header wall above the garage door. The powerhead is usually supported by punched angle iron.

Recently another type of opener, known as the jackshaft opener, has become more popular.[when?] This style of opener was used frequently on commercial doors but in recent years has been adapted for residential use. This style of opener consists of a motor that attaches to the side of the torsion rod and moves the door up and down by simply spinning the rod. These openers need a few extra components to function safely for residential use. These include a cable tension monitor, to detect when a cable is broken, and a separate locking mechanism to lock the door when it is fully closed. These have the advantage that they free up ceiling space that an ordinary opener and rail would occupy. These also have the disadvantage that the door must have a torsion rod to attach the motor to.

Types

[edit]

There are five types of garage door openers:

  1. Chain drive openers. These have a chain (similar to a bicycle's) that connects the trolley to the motor.
  2. Belt drive openers use a rubber belt in place of a chain.
  3. Screw drive openers have a long screw inside the track. The trolley connects to this screw.
  4. Direct drive openers have the motor installed inside the trolley and use a gear wheel to guide the trolley along a fixed chain.
  5. Jackshaft openers mount on the wall at either end of the torsion bar.

Remote control

[edit]

The first wireless garage door openers were invented and developed by two US inventors at the same time, one in Illinois and the other in Washington state, around 1930. They were unknown to each other.[4]

The first garage door opener remote controls were simple and consisted of a simple transmitter (the remote) and receiver which controlled the opener mechanism. The transmitter would transmit on a designated frequency; the receiver would listen for the radio signal, then open or close the garage, depending on the door position. The basic concept of this can be traced back to World War II. This type of system was used to detonate remote bombs. While novel at the time, the technology ran its course when garage door openers became popular. While the garage door remote control transmitter is low power and has limited range, its signal can be received by other, nearby, garage door openers. When two neighbors had garage door openers, then opening one garage door might open the neighbor's garage door as well.

The second stage of the wireless garage door opener system solved the opening-the-neighbor's-garage-door problem. The remote controls on these systems transmitted a digital code, and the receiver in the garage responded only to that code. The codes were typically set by eight to twelve DIP switches on the receiver and transmitter, so they allowed for 28 = 256 to 212 = 4,096 different codes. As long as neighbors used different codes, they would not open each other's garage doors. The intent of these systems was to avoid interference with nearby garage doors; the systems were not designed with security in mind. Intruders were able to defeat the security of these systems and gain entry to the garage and the house. The number of codes was small enough that even an unsophisticated intruder with a compatible remote control transmitter could just start transmitting all possible codes until he found one that opened the door. More sophisticated intruders could acquire a black box master key that automatically transmitted every possible code in a short time. An even more sophisticated method is known as a replay attack. The attacker would use a code grabber, which has a receiver that captures the remote's digital code and can retransmit that digital code at a later time. The attacker with a code grabber would wait nearby for the homeowner to use his remote, capture the code, and then replay the code to open the door when the homeowner was gone. Multicode openers became unpopular in areas where security was important, but due to their ease of programming, such openers are often used to operate such things as the gates in gated apartment complexes.

An intermediate stage of the garage door opener market eliminated the DIP switches and used remotes preprogrammed to one out of roughly 3.5 billion unique codes. The receiver would maintain a security list of remotes to which it would respond; the user could easily add the unique remote's code to the list by pressing a button on the garage door opener while activating the remote control. A large number of codes made the brute force try-all-possible-digital-codes attacks infeasible, but the systems were still vulnerable to code grabbers. For user convenience, these systems were also backward compatible with the older DIP switch remote codes, but adding an old technology remote to the security list made the garage door opener vulnerable to a brute force attack to find the DIP switch code. The larger code space approach was an improvement over the fixed DIP switch codes but was still vulnerable to the replay attack.

The third stage of garage door opener technology uses a frequency spectrum range between 300-400 MHz and rolling code (code hopping) technology to defeat code grabbers. In addition to transmitting a unique identifier for the remote control, a sequence number and an encrypted message are also sent. Although an intruder could still capture the code used to open a garage door, the sequence number immediately expires, so retransmitting the code later would not open the garage door. The encryption makes it extremely difficult for an intruder to forge a message with the next sequence number that would open the door. Some rolling code systems are more involved than others. Because there is a high probability that someone will push the remote's button while not in range and thus advance the sequence number, the receiver does not insist the sequence number increase by exactly one; it will accept a sequence number that falls within a narrow window or two successive sequence numbers in a much wider window. Rolling code technology is also used on car remote controls and with some internet protocols for secure sites.

The fourth stage of garage door opener systems is similar to third stage, but it is limited to the 315 MHz frequency. The 315 MHz frequency range avoids interference from the land mobile radio system (LMRS) used by the U.S. military.

The following standards are used by units manufactured by Chamberlain (including LiftMaster and Craftsman):

Dates System Color of programming button and LED on unit Color of LED on remote*
1984–1993 8-12 DIP switch on 300-400 MHz white, gray, or yellow button with red LED red
1993–1997 Billion Code on 390 MHz green button with green or red LED green
1997–2005 Security+ (rolling code) on 390 MHz orange or red button with amber LED amber or none
2005–present Security+ (rolling code) on 315 MHz purple button with amber LED none
2011–present Security+ 2.0 (rolling code) on 310, 315, and 390 MHz yellow button with amber LED and yellow antenna wires red or blue

* Does not apply to keyless entry keypads or universal remotes.

Recent Chamberlain garage door openers that have Security+ 2.0 features also use a special serial protocol on wired connections rather than a simple switch closure.[5]

The following standards are used by units manufactured by Overhead Door Corporation and its subsidiary The Genie Company†:

Dates System
1985–1995 9–12 DIP switch on 360, 380, or 390 MHz[6][7]
1995–2005 Intellicode/CodeDodger (rolling code) on 390 MHz
2005–present Intellicode/CodeDodger (rolling code) on 315 MHz
2011–present Intellicode 2/CodeDodger 2 (rolling code) on 315 and 390 MHz

Note: There are no standard color codes for the learn button or LED on units manufactured by Overhead Door or Genie. All accessories made for later versions of Genie Intellicode and Overhead Door CodeDodger are backward compatible with previous generations of Intellicode and CodeDodger.

Cloning garage door opener remotes

[edit]
A typical photo of both the outer case and inner circuit of a garage door opener remote control.

Many garage door opener remote controls use fixed-code encoding which use DIP switches or soldering to do the address pins coding process, and they usually use pt2262/pt2272 or compatible ICs. For these fixed-code garage door opener remotes, one can easily clone the existing remote using a self-learning remote control duplicator (copy remote) which can make a copy of the remote using face-to-face copying.

Additional features

[edit]

Additional features that have been added over the years have included:

  • Automatic courtesy lights that turn on when the door opens (or via motion sensors) and automatically turn off after a preset delay
  • A remote lockout feature, which turns off the radio receiver while one is on vacation or away for an extended time.
  • The availability of accessories has increased, including such features as wireless keypads, key chain remotes, and solenoid-operated deadbolts to lock the door itself.
  • Automatic door closing feature, which after a fixed time by the owner, closes the garage door to prevent theft.

More sophisticated features are also available, such as an integrated carbon monoxide sensor to open the door in case of the garage being flooded with exhaust fumes. Other systems allow door activation over the Internet to allow home owners to open their garage door from their office for deliveries.

Another recent innovation in the garage door opener is a fingerprint-based wireless keypad. This unit attaches to the outside of the garage door on the jamb and allows users to open and close their doors with the press of a finger, rather than creating a personal identification number (PIN). This is especially helpful for families with children who may forget a code and are latchkey kids.

Safety

[edit]
Electric eye for safety

The garage door is generally the largest moving object in a home. An improperly adjusted garage door opener can exert strong and deadly forces and might not reverse the garage door in an emergency. The manufacturer's instructions provide guidance to the user on the proper adjustment and maintenance of the opener.

Garage door openers manufactured and installed in the United States since 1982 are required to provide a quick-release mechanism on the trolley that allows for the garage door to be disconnected from the garage door opener in the event of entrapment.[8] Garage door openers manufactured since 1991 are also required to reverse the garage door if it strikes a solid object.[9][10]

In the United States, the Consumer Product Safety Improvement Act of 1990 required that automatic residential garage door operators manufactured on or after 1 January 1991 conform to the entrapment protection requirements of the 1988 version of ANSI/UL standard 325.[11] A requirement for redundant entrapment-prevention devices was added in 1993; such a system can use an electric eye, a door edge sensor, or any other device that provides equivalent protection by reversing the travel of the closing door if an object is detected in its path.[12][13]

California Senate Bill No. 969

[edit]

In California, Senate Bill No. 969 requires that any automatic residential garage door opener that is manufactured for sale, sold, offered for sale, or installed in a residence to have a battery backup function that is designed to operate when activated because of an electrical outage.[14] The bill went into effect on July 1, 2019. Under the bill, any automatic garage door opener that is in violation is subject to a civil penalty of $1000.

The bill was passed by Gov. Jerry Brown on Sept. 21, 2018, in response to the 2017 California Wildfires in which at least 5 individuals lost their lives because they could not open their garage door when the power went out.[15]

The Door and Access Systems Manufacturers Association International opposed the bill arguing that garage door openers with backup batteries require regular maintenance and that the bill should be amended to make this clear. In addition, they said that "garage door openers with backup batteries are not designed to serve as life safety devices, and should not be relied upon to prove a means of egress from a garage during an electrical outage."[16]

The bill passed, despite most garage doors having a release pull cord.

References

[edit]
  1. ^ Robert J Girod (2014). "Garage Door Openers - High-tech Burglary". Advanced Criminal Investigations and Intelligence Operations: Tradecraft Methods, Practices, Tactics, and Techniques. Taylor and Francis. p. 90. ISBN 9781482230741.
  2. ^ "Aids To Modern Living - Garage Doors". Popular Science: 137. December 1946.
  3. ^ Castro, Diane. "The Complete Garage Door System". Regency Conference Center. Retrieved 10 March 2020.
  4. ^ "Widely Separated Inventors Invent Garage Door Openers By Radio Impulses". Popular Science: 32. February 1931.
  5. ^ "Will my older accessories work with the new line of Security+ 2.0 garage door openers?". alldaygaragerepair.com. Retrieved 2017-06-23.
  6. ^ Willmes, Dave. "My Overhead Door Opener Doesn't Work with this Universal Remote". www.overheaddooronline.com. Retrieved 20 October 2016.
  7. ^ "FCC ID BSH8YN106546 by Overhead Door Corporation". FCCID.io. Retrieved 20 October 2016.
  8. ^ "Falling Garage Doors — A Crushing Concern". Garage Door Child Safety.
  9. ^ "Non Reversing Garage Door Openers a Hazard" (PDF). U.S. Consumer Product Safety Commission.
  10. ^ "Garage Door System Safety Guidelines". Door & Access Systems Manufacturers Association International. Archived from the original on 2008-12-23.
  11. ^ Garage Door Operators • CPSC
  12. ^ Non-Reversing Automatic Garage Door Openers Are a Hazard • CPSC
  13. ^ 16CFR1211
  14. ^ "Bill Text - SB-969 Automatic garage door openers: backup batteries". leginfo.legislature.ca.gov. California Legislative Information. Retrieved 6 September 2019.
  15. ^ "New California Law Could Cost You $1000 in Fines". Clark's Garage Door. 4 September 2019. Retrieved 6 September 2019.
  16. ^ "California Mandates Battery Backup With All GDOS - Experts Cite Problems With The Legislation" (PDF). dasma.com. DASMA. Retrieved 6 September 2019.
[edit]

Driving Directions in Will County to


Driving Directions From Chillin' Products to
Driving Directions From Honorable Robert Brumund to
Driving Directions From Pep Boys to
Driving Directions From The Haley Mansion to
Driving Directions From Will County Law Library to
Driving Directions From MainStay Suites Joliet I-80 to
Driving Directions From Joliet to
Driving Directions From Dollar General to
Driving Directions From First American Bank to
Driving Directions From Al's Steak House Restaurant to