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ABSTRACT. We extend the local well-posedness theory for the Cauchy problem
associated to a degenerated Zakharov system. The new main ingredients are
the derivation of Strichartz and maximal function norm estimates for the linear
solution of a Schrodinger type equation with missing dispersion in one direction.
The result here improves the one in [10].

1. Introduction. We consider the initial value problem associated to the degen-
erate Zakharov system

i(OE+0.E)+ A E=nE, (z,y,2) €R3 t>0,
92n—Ain=AL(|E)?), (1)
E(’O) = EO(')? TL(,O) = nO(')v (3'”1(,0) = nl(')v

where A | = 8%—1—857 FE is a complex-valued function, and n is a real-valued function.
The system (1) describes the laser propagation when the paraxial approximation is
used and the effect of the dispersion of the group velocity is negligible ([12]).

We use the term degenerate in the sense that there is no dispersion in the z-
direction for the system in (1) in contrast to the well known Zakharov system

{i@tE—i— AE =nE, (v,y,2) €R3 t>0,

?n — An = A(|EJ?), @

which was introduced in [13] to describe the long wave Langmuir turbulence in a
plasma.

Regarding the IVP (1), Colin and Colin in [2] posed the question of the well-
posedness. A positive answer was given by Linares, Ponce and Saut in [10], showing
the local well-posedness of the IVP (1) in a suitable Sobolev space. The results
proved in [10] extended previous ones for the Zakharov system (2), where transversal
dispersion is taken into account (see [11], [5] and references therein). However, the
system (1) is quite different from the classical Zakharov system (2) since the Cauchy
problem for the periodic data exhibits strong instabilities of the Hadamard type
implying ill-posedness (see [3]).
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Our goal here is to extend the local well-posedness for the IVP (1) to a larger
functional space than that in [10].
Before describing our main result and the new ingredients used in its proof we
proceed as in [10] to study this problem.
First the IVP (1) is reduced into the IVP associated to a single equation, that
is,
{i(atE +0,E)+ AL E=nE, (z,y,2) €R3 t>0, ‘)

E(‘raya 270) = EO(:E7y’ 2)7

where
n(t) = N'(t)no + N(t)n1 + / N(t—t)AL(E{)?)dt,
0
with
N(t)f = (—AL) " ?sin((—AL) 1) f, (4)
and
N'(t)f = cos((—AL)/?1)f, (5)

where (—A )12 f = (& +€)/2))".
Then it is considered the integral equivalent formulation of the IVP (3), that is,

E(t) =£(t EO+/8t—t)(N’( "no + N(t)ny) E(t')dt’
(6)
/st—t /Nt—sAmE()I) S)E()

where £(t) denotes the unitary group associated to the linear problem to (3) given
by
E(t)Eo = (e_it(§f+£§+§3)]/5\o(§1,52753))v~
A smoothing effect for the unitary group £(¢) similar to the one obtained for
solutions of the linear Schrodinger equation was proved in [10] (see Proposition 2.1
below). This was the main tool used there to establish local well-posedness via
contraction principle in the following functional space

HY U (R3)={fe H¥*(R®), DY/?0° f, D}/?0° f € L*(R®), |a| < 2j+1,j € N}, (7)

where o € (Z1)? is a multiindex, Dy f = (|€1[*2f)Y and D;/Zf = (|&|V2f)V.
Roughly the result in [10] guarantees the local well-posedness in H%+1(R3),
j > 2, for data Ey € HY+L(R?), ng € H2(R®) and n; € H¥1(R®) with d,ny €
H*~1(R?), where H*(R®) is the usual Sobolev space.
To improve the previous result obtained in [10] we derive two new estimates for
solutions of the linear problem. The first one is the following Strichartz estimate,

1EW) fllpgrz,zz < cllfllzz,.,

Zy20
where 2/¢g=1—-2/p, 2 <p < .

We can observe that the lack of dispersion in the z-direction is reflected in the
estimate above. The proof uses the explicit Fourier transform of ¢i*=® and the usual
method to prove Strichartz estimates for the linear Schrédinger equation.

The second new estimate for solutions of the linear problem is the following
maximal function estimate

IE@ fllLzree, < T s)fllae@s), s> 3/2. (8)

yzT
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The argument to prove (8) follows the ideas in [6], where they obtained a L2-
maximal function estimates for solutions of the linear problem associated to the
modified Kadomtsev-Petviashvili (KPI) equation.

Remark 1. It is not clear whether the estimate (8) is sharp. In Proposition 2.4
below we show that this estimate is false in H*(R?) for s < 1.

To state our result we shall slightly modify the space H2+1(R3) defined in (7).
We define

H*(R®) = {f € H*(R®), DY/?9°f, DY/?0° f € L*(R%), |a| = 2}.
With this notation, the main result here reads as:

Theorem 1.1. For initial data (Eg, no,n1) in H2(R3)x H2(R®) x HL(R?) and d.n4
€ HY(R3), there exist T > 0 and a unique solution E of the integral equation (6)
such that

E e O([0,T): H*(®?)), (9)
Y (10:0°Ellpee 2, +10,0°El e 2_,) < o0, (10)
|a]=2
1Bz Lo, + 1Bl L2 Lo, < oo, (11)
and
Xr(E) < o0 (12)

where Xr(-) is defined in (13) below.

Moreover, there exists a neighborhood V of (Eg,ng,n1) € H2(R3) x H2(R?) x
HY(R3) such that the map F : (Eg,ng,n1) — E(t) from V into the class defined by
(9)-(12) is smooth.

One also has that

n € C([0,T] : H*(R?)).

Remark 2. Observe that in comparison with the result in [10] we could consider-
ably weaken the regularity required to prove local well-posedness for the IVP (1).
Notice also that it would be possible to lower the regularity a little further because
the maximal function works well in H*(R?), s > 3/2.

Remark 3. The Strichartz estimates were essential in our analysis. It may be
possible to use them in the Bourgain spaces framework to obtain better results (see
for instance [1], [5], and references therein for the Zakharov system). Regarding
global well-posedness, we do not know any conserved quantity that might be useful
to extend globally the local results.

The plan of the paper is the following. In Section 2 we prove the new linear
estimates commented above and recall some known ones established in [10]. Some
useful lemmas will also be presented in this section. In Section 3 we establish
estimates involving the nonlinear term that allow us to simplify the exposition of
the proof of the main result. Finally our main result will be proved in Section 4.

Before leaving this section we introduce the notation used throughout the paper.
We use standard notation in Partial Differential Equations. In addition we will use
¢ to denote various constants that may change from line to line.

Let o = (1,0, 23) and & = (&1, &, &3). For f = f(z,t) € S(RY), f will denote
its Fourier transform in space, whereas f(xm)7 respectively f(”i), will denote its
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Fourier transform in the x;x; and z; variables, i,l = 1,2,3. For s € R, we define
the Bessel and Riesz potentials of order —s, J; and D3, by

Tof = (1 +[¢)*2F and  Dyf =I[¢°f.

We also use the notation J; . and J;. to denote the operators
Twd = A+ 1&&P)F and T3 f =+ |6lP)2f =123
We introduce the next notation to set together all the terms involving the
Strichartz norms in our analysis.

Xr(f) =Y (2 D20 flls ra + 125 0% Fll sy o+ 192240 s, 12)

|a]=1
+ Z (||araaf||L§yTLg + ||ayaaf||L;{,yTLg)-
la|<1
(13)
2. Linear estimates. Consider the linear problem:
OWE+0.E—iAE=0, V(r,y,2z) €R3 t>0, (14)
E(xayu Z7O> = EO(:Evyv Z)

where A = 07 4 ;.
The solution of the linear IVP (14) is given by the unitary group £(t) : H® — H*®
such that

, — v
B(t) = E(1)By = (e EHHOIB (6,6,6)) (15)
Proposition 2.1. The solution of the linear problem (14) satisfies
IDy2E ) fllpee e, < ellfllrz, . (16)
t
||D91/2/0 Et—t)GH)dt |gprz, < clGlrize, (17)
and
t
o [ &t =16 zrz,, <Gz, (18)

These estimates hold exchanging x and y. Here D;/2f = (27r|£1|1/2f)v.

Proof. We refer to [10] for a proof of this proposition. O

Now we give the precise statement of the inequality (8) and its proof.
Proposition 2.2. For s > 3/2, and T > 0 we have
€@ Eollz2 5, < (T, s)I|Eoll s m3)- (19)

The same estimate holds exchanging x and y.

The proof of Proposition 2.2 is a direct consequence of the next lemma, as we
shall see later.
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Lemma 2.3. For every T > 0 and k > 0, there exist a constant ¢(T) > 0 and a
positive function Hy 7(-) such that

—+oo
Hy 1 (y)da < ¢(T)2%F, (20)
0

and

| G (—H(EF+EE+E)+2:6) Hq/,l (&) dé| < Hypr(|z1)), (21)
=1

for|t| <T and x = (ml,xg,xg) and &€ = (£1,&2,&3) in R® where 1;(&;) = (281 —
|€i]), and @ denotes a C*°(R) function such that ¢ = 1 for x > 1 and ¢ = 0 for
z <0.

To prove this lemma we will employ the argument introduced in [4].

Proof. Denote by J(z,y,z,t) the integral on the left-hand side in (21). We can
rewrite J(t,z,y, z) as:

J(z,y,z,t) = HJi(xi,t),
where
Ji(wi,t) = /ew"(g")i/}i(fi)dffi and  ¢;(&) = (—t& + 2:&i), 1= 1,2,
and
Js = /6i(7t§3+z§3)¢3(§3)d53,

we have |J| < |J1]|J2]|J5]-
Next we consider the following three cases:
e For |z1] < 1 we use the support of 1, j = 1,2,3, and get |J| < c23*.
e For |x1| > max{1,232%¢}. In this case |v1| > 4|¢|t for & in the support of
Y1, and so | (€1)] > |#1]/2. Using integration by parts twice we get:

h :/ <s0 (:ﬁi)) .

Now by the support of 1, and the inequalities | (£1)] > |#1]/2 and |z1| ™! <
1 we have:

| < c(T)/ L < e(m)2t e
{162 <25+1} |~””1|

Then |J| < 23%¢(T)|z1|~2, using the supports of 15 and 3.

e For 1 < |zq] < 232%[t|. Observe that in this case t > 2773 > 0 and t72 <
clxy| 7222 Since | (&1)| = 2t > 0, Van der Corput lemma (see [9] for
instance) implies |J;| < ct~'/2. Similarly, we have |Jy| < c¢t~'/2. Thus
|J| < ct12F < eTt=22% < ¢23%|21|72 by using the support of 1.

Finally, we define

(p) = 23k for 0<p<1,
I = c(T)2%*p=2 for 1<p,

and this function satisfies (20) and (21). O
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Remark 4. Observe that Lemma 2.3 still works if we change 1; by ¥;9(|¢;|—2%+1),
j=12o0r3.

Proof of Proposition 2.2. Using the same notation as in Lemma 2.3, ie., 9; =
P2k — 1€]), j=1,2,3, we define the sequence {¢} as follows:
Dol€1,E2,63) = V(2 — |E1))0(2 — €29 (2 — |&3)),
and for k > 1,
3
Vi (&1,62,83) = Z%%%w(\ﬁﬂ -2k 4 1).
i=1
Notice that >, -, Uy, = 1.

Now we define the operator ka(g) 1/2(§)f(£), £ e R
It is not difficult to verify that

1B fllzz < 27| fllm-,

BYf = if,
> E(t)BREy = £(t)Eo,

k>0

T
| / E(t—)(B2g( 7)) (x,y, 2)d7| < c(Hyr(|-])* / ) / / g, 2)|drdydz) (),

for [t| < T and g € C§°(RY).

Since from this point on the argument to complete the proof of the proposition
is well understood (see for instance [8]) we will omit it. Thus the desired result
follows. O

Now, following ideas from [6] used to deal with solutions of the KPI equation,
we show that (19) does not hold for s < 1.

Proposition 2.4. For each s < 1 there exists Fy such that
1E@) Follzree, = (T, s)|| Follm-

yzT

Proof. Suppose that (19) is true and define Ey(£) = é(z%), where k € N and € C§°
is such that

0(e) = 1 on {£eR%1<|€ <2},
©=90 on {eRr¥%g<1/2}U{¢ecR%¢ >4}

So by change of variables

(IR IGOPE = ([ (0 2y 2 an)}

1€]
<ll<qy

<23l~c/2+ks/ 2 2k+|§‘2)3|é(£)
<|€|<4}

<23k‘/2+k8 (

g <o)
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Next, we estimate £(t)Ey. Again by changing variables we have

(€ Eo)(z,y, 2) = / ei<-"f€1+yfz+zfa+t(£%+f§+sg)>g(i)dg
{i<l<qy 2k
=2 e h(¢)de,
{3<Ig1<4}

where £ = 2F¢), s = y2F&y + 22F€3 + £(220¢2 + 22R€2 4 2F¢3).
Now, by Taylor’s expansion

EWE ) =2 [ e

> 23k / (cos(z€) cos(s) — sin(x€) sin(s))0(€)de|
{3<lel<4}

3k _(xg)Q (€ _f (s
22 [0S )0 o)

(@) — () (s — 1 (5))]6(€)de
> 99 / 1=z, 5,8) + pla. 5, E)A(E)de].
{3<|€1<4}

where

77(55787@ = (xg) T % + : Téxg) + <x )QT(S) + 3$£+T1(£L’7)T1(S),
o Rl

pla,s, &) = (@) + ——+r(s) + r(x€)r(s) + x€ri(s) 4 sri(xf),
r()=O' =)+ —... and () =P -+ —....

If we choose 0 < § < 1 and take |z| §752_k, Y, 2 827k, ¢~ 62_2’“77
then s, x€ ~ O(6), 0 < r(s), ri(s), r(zf), ri(zf) < 1and 1 —n(x,s,&) > ¢ > 0.
So,

I(E(t) Eo)(2,y,2)] > 2°*] / A-0(8)de| > 2% A1 dg| > 2%,
{3<1€1<4} {1<1€1<2}
Then,
(€@ Eo)lrzrse, = (/ (sup |E(t)Eo|)’dx)"/? > 2327 k/2 = 9%k/2,
Y || <52 F t:zi%;f’;

Finally, we have

¢ 22 < |(E(t)Bo)llparee,. < || Bollms < 2%/2+h vk € N,

yzT —

which implies s > 1. O

Now we establish Strichartz estimates to the linear problem (14). Before that we
state and prove an essential lemma:

Lemma 2.5. Ift #0, % + i =1 andp’ € [1,2], then the group E(t) defined in (15)

is a continuous linear operator from Lglng (R®) to L?, L%(R®) and
c

IE@) fllze, 2 < W"f”Lﬁ;Lg'



1266 VANESSA BARROS AND FELIPE LINARES

Proof. From Plancherel’s theorem we have that
1€ Iz, 2 = €@ Flzs = e EHED Fll s = | fll = i, 12- (22)
Using Fourier’s transform properties we obtain
€)Y, 2)
= (M (6,6, 6))" (0.y.2)
et (¢mMEFED) Fle £, &)V (2, y, ))v(%)(" " 2)

= (

(67“53 THEHEV@m) FE (6 6, 6)) (2,1,) P (- 2)
. 1(51"‘52)/4‘“

(6 T T1T2 ﬁwS)(flug%é-B))(xvyv '))V(ma)(‘v ‘72)

(6 Zt§3 ay7 3))\/(003)(.’.’2)7

where (&1+€3) /41t
eH(€1+83)/4lt .
g(l’,y7 ) = T *z1249 ]?( 3)(617€2u€3))(‘r7y7 ')7

and #,,,, is the convolution in the first two variables, i.e.,

(fl *ri2o f2)(1‘ay72) = /Rz f1(37 —T1,Y — $2,Z)f2($1,$2’2)d331d$2-

By Plancherel’s theorem and Minkowski’s inequality we have

i(w—w1)?+(z—w2)?)) /4]t|
e
= ”// dnt J/c\(mg)(xl,xz,')dxldx2||,;§

gille—a) e D/l
S//H yon J@) (21, 22, )| 2 dzrdzy

1 .
< m//HJ?(“)(M,M,')HLgdﬂildl‘z
= g | [ 1@ lusdzides = Sl

Therefore, from the last inequality we obtain

€@ Fll g r2 < 4 |t|Hf||L,yLz (23)

Interpolation between inequalities (22) and (23) yields the result. O

Now we are able to prove Strichartz estimates. We notice that our result do not
cover the endpoint (p, q) = (00, 2).

Proposition 2.6 (Strichartz estimates). The unitary group {E(t)}T2° defined in
(15) satisfies

IE@) fllzaze,rz < cllfllrz

zyz’

(24)

I ] &= 0060 gz, < clal (25)
and

H/S Btz < cllglly 1o (26)
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where

1 1 1 1 2 2 2

—+—-=-+-=1 -=1——andp= 4, 0€(0,1].

PP o qa q q p 0
Proof. To prove this proposition we use standard by now arguments. First one
shows that the three inequalities are equivalent. The main ingredient is the Stein-
Thomas argument. Thus it is enough to establish for instance the estimate (25).

To obtain (25) we use Lemma 2.5 and the Hardy-Littlewood-Sobolev theorem. [

Next we recall some estimates proved in [10] regarding the solutions of the linear
problem
Pn+Ain=0, (v,9,2)€R? t>0,
n(-,0) =no() (27)
9n(-,0) = nai(-),
where Ay = 07 + 2. The solution of the problem (27) can be written as
n(t) = N'(t)no + N(t)nq,
where N(t) and N'(t) were defined in (4) and (5).
Lemma 2.7. For f € L*(R®) we have

IN@)fll2rsy < [HI ] 22(rs), (28)
IN'(t) fll2esy < [1fllz2 s, (29)
and
”(_AJ_)UQN(t)f”L?(R?’) < fllz2 sy (30)
Remark 5. From this lemma one can easily deduce that
Z N0 fll 2 msy < cll fllzr(msy + clt|| O f | o (ms)- (31)

laf<2
Lemma 2.8. [t holds that

[N (t)noll2 Lo < lIm0ll g2 (@s),

sy —

I(=A)AN @z, < Tlinallazes),

yzT —
and

IN(®nillzzree < T([[nallgrrsy + [10:n1 |5 gs))-

yzT —
These estimates hold exchanging x and y.

In our argument we shall use some of the calculus inequalities involving fractional
derivatives proved in [7]. More precisely, we recall the following estimate which is
a particular case of those established in ([7], Theorem A.8).

Lemma 2.9. Let p € (0,1), p1,p2 € [0,p] with p = p1 + p2. Furthermore, let
D1, D2, q1,q2 € [2,00) such that

1 1 1 1 1

2 p1op2 @ @
Then

||D§j(fg)—ngjg—Dﬁjngng (R;L2(Q)) < € ||D§}f||L§; (R;qu(Q))”DﬁgHLi? (R;L92(Q))>
where @ = R™™ x [0, 7).
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3. Nonlinear estimates. In this section we will establish estimates for the non-
linear terms involving in our analysis.
We begin by rewriting the integral equivalent form of the IVP (3) as

E@t)=&E(t)E +/Ot5(tt’)(EF)(t’)dt’ +/Ot5(tt’)(EL)(t’)dt/,

where
F(t) = N'(t)no + N(t)n1, (32)
and .
L) = [ Nt~ )AL (EP)E)ar. (33)
0
In the next lemma we treat the nonlinearity L in the Sobolev norm | - || g.

Lemma 3.1. Let «, 81, B2 be multi-indices, then

> 10°Llzs,. < T Eluanz, Y 10.0°Eluzrs,,

lo|<2 e
+eT 2 Bllziz, 3 10,0°Blligsz.,
ja=2 (34)
N _

+cT/? Z (Hax@ﬁlEHM o2t 10,0° B[ 4 TL?)HJzeraﬁQEHL4 rL2

s 2 Ty b Ty z

|B1]+821<2
[B2]=1

+ CT”E“QL;CHZ(RS)'
Proof. Using the definition of L in (33) and the inequality (30) we have that

S 10 Lliz,, < 3 [ NADEANE = (-2 20 (ER)(z,., 0

xyzT
lal<2 lal<2

T
<Y / [(~A1)Y20°(EP)(5)]| .2, . ds

laf<2 70

< TN s oy + T2 Y (10.0°(BE) |2, +110,0°(BE)(3)llzz, ., )-
|a]=2

(35)

Next it will be enough to consider one of the terms inside the sum on the right
hand side of (35). By Leibniz’ rule we have

|0:0°(ER) |z, <e S [|0.(0P E*B)| 2.

zT

[B1|+B2|=2
S ¢ Z (HalaﬁlEaﬁQE”Lisz + HaﬁlEa'Laﬁ2E||Lisz>
[B1]+B2|=2

(36)
Now we will consider just one of the terms on the right hand of the last inequality,
the other one can be similarly treated. To simplify the exposition we choose the
terms | 02EE|| 12 .. and |02E0. E| 12 . to show the next estimates since they have
TYz Yz
the same structure of the reminder terms in the sum in (36).
The Holder inequality implies

|2EE Lz, < 10E] ers  EllLzo (37)

zlzy2T"
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On the other hand, using the Holder inequality and the Sobolev lemma in the
z-direction we obtain

|02E0,E|| >

xyzT

< MOZE 2|0z Ell e e,
1
14
< c||02E|| 2 |72 Bzl , (38)
1
14
< CH8§E||L§?JTL§”JZ2 uBlrs 12-

Using the information in inequalities (37) and (38) in (36) and then in (35) the
estimate (34) follows. O

Lemma 3.2. Let «, 81, 82 be multiindexes, then

1Lz o, + 1Ll L2 Lo, < CTQHEH2L%°H2(R3)
+CT3/2||E||L§L;§T Z ||8z6aE||L;oL§zT+CT3/2HE||L§L;X;T Z ||8y8°‘E||LgoL§ZT
la|=2 la|=2

1
s+ —
e 37 (1007 Ellis ya + 10,07 Bllua 12 ) 17207 Bl 2
[B1]+]B2]<2
[B2]=1

Proof. Using Lemma 2.7 we have that
T
1Lz pes, < / I(=ADYEN(E =) (=A0) 2 EP) )|z 1oc . A
0

T
<7 [ 1AL B e
Thus applying the argument used in Lemma 3.1 the result follows. O

Lemma 3.3.

Z [0 (EF)|2, . < T2 || Ell gz (Inoll 2 + lInall s + T|0zma| 1), (39)
la|<2

and
D 0(EL)|| 2 o = CT3/2||E||LooH2(R3)
lor]<2
+
+ 2 3 (10207 Bllga, 1z + 10,07 Bl 2 ) 19202 Bl 1o
[B1]+B2]<2
|B2]=1 (40)

+ cT'[|E| ge 2 (v 2 (|E||L2L;<;T Z 10:0%El| o2 .

le|=2
+ 1Bl 212, Z 18y0“E | L r2_,.)-

lee|=2

Proof. To obtain the estimate (39) we first use properties of Sobolev spaces to
obtain

Z ||6Q(EF)HL§M < CT1/2||E||L;9H2(R3)HFHL;CH?(M)-
|| <2

Then Lemma 2.7 and (31) yield the result.
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Analogously to obtain the estimate (40) we first use properties of Sobolev spaces
to obtain

D N0MEL)l Lz, < T PIEl g 2y | Ll e 2 e3)-
|| <2

Then Lemma 3.1 yields the result. O

Lemma 3.4. It holds that

t
S 10, [ et -t BRIz,

=2
< T2l g 2 (Imoll = + Tl + T 112)
+ T2 Ellz s, (Inoll = + Inalls + T2 0:ma | 12)

yzT
+ Z (T3/4Hle/4+D;/28B1E”L§yTL§ +T5/8||J§>/8+8/31E”LBT/3L
[B1l=1
% (Ilnollzr= + T2 (lna || g1 + Tl|O:mr | ).

iyLE)

These estimates holds exchanging x and y.

Proof. Let §; € (Z1)3, i = 1,2, be multi-indices. The Leibniz rule and Proposition
2.1 yield

t
0, / E(t — )0 (EF)(t')dt' | o 2
0 yzT

t
<y Ham/ E(t — 1) (O"E F + O F)(t')dt' | o
0 yzT

|| =2
t
+ o) ||aw/E(t—t’)(8B1E852F)(t’)dt’HL:O%ZT (41)
[B1|=|B2|=1 0
S S (0B Flpare, +I1EOFlpize.,)
|| =2
T
|B11=1B2]=1""°

Using the Holder inequality Lemma 2.8 and Remark 5 we deduce that

|Z (10°E Fllags , + 1 E0°F|psz2 )
a|=2

42
< T2 Bl (Imo L 2 + Tl s + T)0ma 1) (42)

+cllBllrazee, (Inollme + T2 (Inal| mre) + Tl0zna |l (rey).-

yzT

On the other hand, the use of the fractional Leibniz rule in Lemma 2.9, the
Holder inequality and the Sobolev embedding in several stages yield the next chain
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of inequalities

3 / |DY2(0% B0 F)|p,.

[B1]=|B2]=1
<e Y / (IDY20% Bt s, 0% F ()1,
|B1]=|B2|=1

+|0ME()DL20% P (t)]| 2, ) dt’
<c Z (T3/4”le/4+Dalc/28ﬁlE”Lj;yTL§HF”L;’?H?
[B1]=1
+ T5/8||J§/8+861E||L§/3L§ylz§ HF”L%CHz)
<e Z (T3/4||le/4+Di/QaBIEHLinL§ +T5/8|‘J§/8+aﬁlE||L8T/3L§yL§)
[B1]=1
% (Inollrz + T2 |01l 2 ey + TN|Oma ] 12 rsy )
Thus combining (42), (43) and (41) the result follows. O

Lemma 3.5. It holds that
S 1o [ e 10 B e,
jal=2

< cT"?|E|lpse 2| Lllzz o, + T2 | Ell 2o I Ll op e

yzT yzT
+c Z T3/4‘|J§/4+D;/2@B1E||LinLg +T5/s||J§/s+aﬂ1E||LgT/3L§yL3)||L||L%OH2.
[B1]=1

The estimate holds exchanging © and y.

Proof. We follow the argument in the previous lemma. More precisely, Let §; €
(Z™)3, i = 1,2, be multi-indices. The Leibniz rule and Proposition 2.1 yield

0. / )0 (BL)(#)dt |1,

<D 10s / E(t —t)OEL+EO* L)1)t || e r2,

jal=2
t
+ > o / E(t — 1) (0" BOZL)(t)dt' || e 2,
[B1]=]B2]=1 0
< (||@°’ELIIL;L§ZT + B0 L2 )
|a|=2
[B1]=|B2]|=1

Using the Holder inequality we deduce that
> (10°ELllyrs,, + 1B Lz ,)
|a]=2

< CTl/zHEHL;OH?HL”LgL;gT + ¢T1/? 1Bl 22 oo 1Ll £ge b2
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On the other hand, the use of the fractional Leibniz rule in Lemma 2.9, the
Holder inequality and the Sobolev embedding yield

T
>[I0t B L,
0

|B1]=[B2]=1
T
ce X [ 0D B, 107K,
|B11=1821=1 "7 \

+ 107 B(#)DY/20% L(t') | 12, ) dt

<ec Z (1‘!3/4”J21/4+l);c/28ﬂ1l;'”LinLZ +T5/8||JS/8+861EHLg,/sLing)”L”L%OHQ
[B1]=1

O

4. Proof of Theorem 1.1. As we mention in the introduction we will use the
contraction mapping principle.
We first define the metric space

Xox ={E € C([0,T] : H*[R?)) :|| E|| < a},
where

IEN =NEl g m2rey + Y (ID2/20%Ellng e, + |1Dy*0°Ellrg 2, )

T “zyz
|a]=2

+ 2 (DY Bl s g2+ T2/ 0° B s s 1

la|=1
+ T2 Bl p2) + Bl znse, + IEllr2rss,,
+ > (10:0°Bllza 12 + 10,0 Ell s, 12)

lo]<1
+ > (100" Ellgera_, + 10,0 Ell ez, )-

|a|=2

and the integral operator on X, 7,

V(E)(t) = E(t)Eq + /Ot Et -t EF){dt + /Ot Et - WEL)(dt',  (44)

where F' and L were defined in (32) and (33), respectively.

We will show that for appropriate a and T the operator ¥(-) defines a contraction
on X, 7.

We begin by estimating the H?(R3)-norm of W(E). Let E € X, 7. By Fubini’s
Theorem, Minkowski’s inequality and group properties we have

T
19 ()l <I|Follie + 1]l 1 / |E(t)]| =t
s (45)
+ B e e / L) 2.
0
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From Lemma 2.7, Lemma 3.1 and inequality (31) we have
IU(E) () a> < |Eolla> + TIE| Les a2 (1m0l a2 + Il a1 msy + TN0zn1 |1 gs))
+ ¢T3\ Bl o oy + T2 Ellpze 2 | Ellrz e, 0 10:0°E |l g,

zlyr
la|=2

+ T2\ Ell g 2 1Bl s2nss, Y 10,0 Ellpserz

|a]=2

+ CT3/2||E||L§9H2 X

14 _
S (10:07 Elgs 1z + 10,07 s, 12 ) 172 9% Bl

[B1]4182]|<2
[B2]=1
(46)
Therefore
[(E)) L 2 <l Eollz + T El (IInoll ez + 1011 rsy + TN 0z || 111 sy

+ T2 B

Next, we estimate the norms

I lezrs, D 1000 lligere s |- lizrs,e D 10,0 lperz,

| <2 ler]<2

By symmetry is enough to estimate the first two norms. Thus, using the definition
of ¥ in (44), Proposition 2.2 and the inequalities (45) and (46) it follows that

(B2 rze, <lEollz + TN EN (Inoll = + nallm @) + Tl0zmllm @)
+ T B,
Next we use Proposition 2.6 and then the inequalities (45) and (46) to obtain

ST NI DY g+ 1 B ey
|a]=1
+ OB s e+ Y (10:0°W(E)|ps 12 + 10,0°U(E) 11, 12)

lal<1

T T
< (Bl + Bl [ VP@)ledt + [Blugae [ ILE) i),
0 0

< [|Eollz= + cTIEN (lnoll sz + lInall e sy + Tll0zmal s ms)) + T2 B,

Now using the definition of ¥ in (44), Proposition 2.1 and Lemmas 3.4 and 3.5
we obtain

> N0:0"W(B) g2, S e D IDY*0"Bollse + () T ||

=2 =2
+ (D) TV EN (lnoll = + Inallzs + Tll0zn )

It remains only to estimate the norms

Z |DL/2ge . lzzr2,. and Z ||D1/28a Iz Lz, .

lou]=2 lor]=2

Once again by symmetry we only estimate the first one.
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From the definition of ¥ in (44), Proposition 2.1 and Lemmas 3.4 and 3.5 we get
YD 20 W(E) g rz,, < Y 1D3/20%Eolle + o(T) T || EI?

zTYz

la|=2 |a|=2
+c(T) T2 EN (IInoll 2 + [l + Tl|02n ]| 1)

Hence, a suitable choice of a = a(||Epl| g5, T) and T' (T sufficiently small depend-
ing on |[nol| s, ||n1ll 72 and [|0.11|| z2), we see that ¥ maps X, r into X 7.
Since the reminder of the proof follows a similar argument we will omit it.
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