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Abstract. We study the global Cauchy problem associated to the
Davey-Stewartson system in Rn, n = 2, 3. Existence and uniqueness of
the solution are established for small data in some weak Lp space. We
apply an interpolation theorem and the generalization of the Strichartz
estimates for the Schrödinger equation derived in [9]. As a consequence
we obtain self-similar solutions.

1. Introduction

This paper is concerned with the initial value problem (IVP) associated
to the Davey-Stewartson system

i∂tu+ δ∂2
x1
u+

n∑
j=2

∂2
xju = χ|u|αu+ bu∂x1ϕ,

∂2
x1
ϕ+m∂2

x2
ϕ+

n∑
j=3

∂2
xjϕ = ∂x1(|u|α),

u(x, 0) = u0(x)

(1.1)

(x, t) ∈ Rn × R, n = 2, 3, where u = u(x, t) is a complex-valued function
and ϕ = ϕ(x, t) is a real-valued function.

The exponent α is such that 4(n+1)
n(n+2) < α < 4(n+1)

n2 , the parameters χ and
b are constants in R, δ and m are real positive, and we can consider δ and χ
normalized in such a way that |δ| = |χ| = 1.

The Davey-Stewartson systems are 2D generalizations of the cubic 1D
Schrödinger equation,

i∂tu+ ∆u = |u|2u
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and model the evolution of weakly nonlinear water waves that travel pre-
dominantly in one direction but for which the amplitude is modulated slowly
in two horizontal directions.

System (1.1), n = 2, α = 2, was first derived by Davey and Stewartson
[13] in the context of water waves, but its analysis did not take into account
the effect of surface tension (or capillarity). This effect was later included
by Djordjevic and Redekopp [12], who have shown that the parameter m
can become negative when capillary effects are important. Independently,
Ablowitz and Haberman [3] obtained a particular form of (1.1), n = 2,
as an example of a completely integrable model also generalizing the two-
dimensional nonlinear Schrödinger equation.

When (δ, χ, b,m) = (1,−1, 2,−1), (−1− 2, 1, 1), (−1, 2,−1, 1), the system
(1.1), n = 2, is referred to as DSI, DSII defocusing, and DSII focusing
respectively in the inverse scattering literature. In these cases several results
concerning the existence of solutions or lump solutions have been established
([1], [2], [4], [6], [15], [16], [36]) by the inverse scattering techniques.

In [18], Ghidaglia and Saut studied the existence of solutions of IVP
(1.1), n = 2, α = 2. They classified the system as elliptic-elliptic, elliptic-
hyperbolic, hyperbolic-elliptic and hyperbolic-hyperbolic, according to re-
spective sign of (δ,m): (+,+), (+,−), (−,+), or (−,−).

For the elliptic-elliptic and hyperbolic-elliptic cases, Ghidaglia and Saut
[18] reduced the system (1.1), n = 2, to the nonlinear cubic Schrödinger
equation with a nonlocal nonlinear term, i.e.,

i∂tu+ δ∂2
x1
u+ ∂2

x2
u = χ|u|2u+H(u),

where H(u) = (∆−1∂2
x|u|2)u. They showed local well-posedness for data in

L2, H1, and H2 using Strichartz estimates and the continuity properties of
the operator ∆−1.

The remaining cases, elliptic-hyperbolic and hyperbolic-hyperbolic, were
treated by Linares and Ponce [28]; Hayashi [19], [20]; Chihara [7]; Hayashi
and Hirata [21], [22]; and Hayashi and Saut [23] (see [29] for further refer-
ences).

Here we will concentrate on the elliptic-elliptic and hyperbolic-elliptic
cases. We start with the motivation for this work:

From the condition m > 0 we are allowed to reduce the Davey-Stewartson
system (1.1) to the Schrödinger equation

i∂tu+ δ∂2
x1
u+

n∑
j=2

∂2
xju = χ|u|αu+ buE(|u|α), u(x, 0) = u0(x), (1.2)
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∀x ∈ Rn, n = 2, 3, t ∈ R, where

Ê(f)(ξ) =
ξ2

1

ξ2
1 +mξ2

2 +
∑n

j=3 ξ
2
j

f̂(ξ) = p(ξ)f̂(ξ). (1.3)

Now observe that if u(x, t) satisfies

iut + δ∂2
x1
u+

n∑
j=2

∂2
xju = χ|u|αu+ buE(|u|α),

then uβ(x, t) = β2/αu(βx, β2t) does also, for all β > 0.
Therefore, it is natural to ask whether solutions u(x, t) of (1.1) exist and

satisfy, for β > 0,
u(x, t) = β2/αu(βx, β2t).

Such solutions are called self-similar solutions of the equation (1.2).
Therefore, supposing local well posedness and u a self-similar solution we

must have

u(x, 0) = uβ(x, 0), ∀ β > 0; i.e., u0(x) = β2/αu0(βx).

In other words, u0(x) is homogeneous with degree −2/α and every initial
data that gives a self-similar solution must satisfy this property. Unfortu-
nately, those functions do not belong to the usual spaces where strong solu-
tions exist, such as the Sobolev spaces Hs(Rn). We shall therefore replace
them by other functional spaces that allow homogeneous functions.

There are many motivations to find self-similar solutions. One of them
is that they can give a good description of the large-time behaviour for
solutions of dispersive equations.

The idea of constructing self-similar solutions by solving the initial value
problem for homogeneous data was first used by Giga and Miyakawa [17],
for the Navier-Stokes equation in vorticity form. The idea of [17] was used
later by Cannone and Planchon [8] and Planchon [32] (for the Navier-Stokes
equation); Kwak [24] and Snoussi, Tayachi, and Weissler [37] (for nonlin-
ear parabolic problems); Kavian and Weissler [25], Pecher [33], and Rib-
aud and Youssfi [35] (for the nonlinear wave equation); and Cazenave and
Weissler [10], [11], Ribaud and Youssfi [34], and Furioli [14] (for the nonlinear
Schrödinger equation).

In [9] Cazenave, Vega, and Vilela studied the global Cauchy problem for
the Schrödinger equation

i∂tu+ ∆u = γ|u|αu, α > 0, γ ∈ R, (x, t) ∈ Rn × [0,∞). (1.4)
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Using a generalization of the Strichartz estimates for the Schrödinger equa-
tion they showed that, under some restrictions on α, if the initial value is
sufficiently small in some weak Lp space then there exists a global solution.
This result provided a common framework to the classical Hs solutions and
to the self-similar solutions. We follow their ideas in our work. From the
condition m > 0 we are allowed to reduce the Davey-Stewartson system
(1.1) to the Schrödinger equation (1.2). Now comparing Schrödinger equa-
tions (1.2) and (1.4) we observe that we have the nonlocal term uE(|u|2) to
treat. The main ingredient to do that will be an interpolation theorem and
the generalization of the Strichartz estimates for the Schrödinger equation
derived in [9]. As a consequence, we prove existence and uniqueness (in the
sense of distributions) to the IVP problem (1.2). As a consequence we find
self-similar solutions for the problem (1.2) in the case δ > 0.

To study the IVP (1.2) we use its integral equivalent formulation

u(t) = U(t)u0 + i

∫ t

0
U(t− s)(χ|u|αu+ buE(|u|α))(s)ds, (1.5)

where U(t)u0, defined as

Û(t)u0(ξ) = e−itψ(ξ)û0(ξ), ψ(ξ) = 4π2δξ2
1 + 4π2

n∑
j=2

ξ2
j , (1.6)

is the solution of the linear problem associated to (1.2).
We also define the subspace Y ⊂ S′(Rn), where

Y = {ϕ ∈ S′(Rn) : U(t)ϕ ∈ L
α(n+2)

2
∞(Rn+1)},

‖ϕ‖Y = ‖U(t)ϕ‖
L
α(n+2)

2 ∞(Rn+1)
, and L

α(n+2)
2
∞(Rn+1)

are weak Lp spaces that we define later.
Our main result in this paper reads as follows:

Theorem 1. There exists δ1 > 0 such that given

4(n+ 1)
n(n+ 2)

< α <
4(n+ 1)
n2

and u0 ∈ Y with ‖u0‖Y < δ1, then there exists a unique solution u ∈
L
α(n+2)

2
∞(Rn+1) of (1.5) such that ‖u‖

L
α(n+2)

2 ∞(Rn+1)
< 3δ1.

To obtain this result we will use the contraction-mapping theorem and
some estimates for the nonlocal operator E, defined in (1.3).
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As a consequence of Theorem 1, we show that given any initial data in Y
and assuming the existence of a solution u to the integral equation (1.5) we
have that u is the solution (in the weak sense) of the differential equation
(1.2). We emphasize that Theorem 1 provides the existence of solutions to
the equation (1.5) under the assumption of small initial data.

Proposition 2. Suppose

4(n+ 1)
n(n+ 2)

< α <
4(n+ 1)
n2

,

u0 ∈ Y, and let u ∈ L
α(n+2)

2
∞(Rn+1) be the solution of (1.5). It follows that

t ∈ R → u(t) ∈ S′(Rn) is continuous and u(0) = u0. In particular, u is a
solution of (1.2). Moreover, u(t0) ∈ Y for all t0 ∈ R. In addition, there exist
u± such that ‖U(t)u±‖

L
α(n+2)

2 ∞(Rn+1)
< ∞ and U(−t)u(t) → u± in S′(Rn)

as t→ ±∞.

Remark 3. We notice that Theorem 1 works for the hyperbolic-elliptic case.
As far as we know, the existence of self-similar solutions in this case is an
open problem. Recently, Kevrekidis, Nahmod, and Zeng [26] introduced a
method to prove the existence of self-similar solutions for the hyperbolic
cubic Schrödinger equation. It would be interesting to investigate whether
this method can be applied to obtain self-similar solutions for the hyperbolic-
elliptic case.

Remark 4. We also observe that the analysis developed here will work for
the Zakharov-Schulman system, i.e., i∂tu+ L1u = ϕu,

L2ϕ = L3(|u|α),
u(x, 0) = u0(x)

(x, t) ∈ Rn × R, (1.7)

where u = u(x, t) is a complex-valued function, ϕ = ϕ(x, t) is a real-valued
function, and

Lj =
n∑
i=1

aij∂
2
xixi , k = 1, 2, 3,

when the operator L2 is elliptic; see [27] and [31].

This paper is organized as follows: In Section 2 we show the main the-
orem. In preparation for that we will establish some needed estimates for
the integral operator. The last section will be devoted to finding self-similar
solutions.
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2. Global existence in weak Lp spaces

Let us define the weak Lp spaces we will use in the following:

Definition 5.

Lp∞(Rn) = {f : Rn → C measurable ‖f‖Lp∞(Rn) := sup
λ>0

λα(λ, f)1/p <∞},

where α(λ, f) = µ({x ∈ Rn : |f(x)| > λ}) and µ = Lebesgue measure.

The reader should refer to [5] for details.

Remark 6. Using a change of variables it is easy to see that for any ϕ ∈
S′(Rn), 1 ≤ p ≤ ∞, and τ ∈ R,

‖U(t)ϕ‖Lp∞(Rn+1) = ‖U(t+ τ)ϕ‖Lp∞(Rn+1),

where U(t) is the unitary group defined in (1.6).

The next theorem establishes a relationship between Lorentz spaces Lp∞

and Lq spaces:

Theorem 7 (Interpolation theorem). Given 0 < p0 < p1 ≤ ∞, for all p and
θ such that 1

p = 1−θ
p0

+ θ
p1

and 0 < θ < 1, we have

(Lp0 , Lp1)θ,∞ = Lp∞ with ‖f‖(Lp0 ,Lp1 )θ,∞ = ‖f‖Lp∞ ,

where

(Lp0 , Lp1)θ,∞ =
{
Lebesgue-measurable a : ‖a‖(Lp0 ,Lp1 )θ,∞

:= sup
t>0

t−θk(t, a) <∞
}

and
k(t, a) = inf

a=a0+a1

(‖a0‖Lp0 + t‖a1‖Lp1 ).

Proof. We refer to [5] for a proof of this theorem. �

Remark 8. Another relationship between Lorentz spaces and Lp spaces is
given by the following decomposition: Let 1 ≤ p1 < p < p2 <∞. Then

Lp∞ = Lp1 + Lp2 .

The next result is a generalization of the classical Strichartz estimates for
the Schrödinger equation. This was proved by Vilela in [30].
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Theorem 9. Consider r, r̃, q, and q̃ such that

2 < r, r̃ ≤ ∞, 1
r̃′
− 1
r
<

2
n
,

1
q̃′
− 1
q

+
n

2
(

1
r̃′
− 1
r

) = 1, (2.1){
r, r̃ 6= ∞ if n = 2,

n− 2
n

(1− 1
r̃′

) ≤ 1
r
≤ n

n− 2
(1− 1

r̃′
) if n ≥ 3,

(2.2)

and 
0 <

1
q
≤ 1
q̃′
< 1− n

2
(

1
r̃′

+
1
r
− 1) if

1
r̃′

+
1
r
≥ 1,

−n
2

(
1
r̃′

+
1
r
− 1) <

1
q
≤ 1
q̃′
< 1 if

1
r̃′

+
1
r
< 1.

Then we have the following inequalities:∥∥∥∫ t

0
ei(t−τ)∆F (·, τ)dτ

∥∥∥
LqtL

r
x

≤ c‖F‖
Lq̃
′
t L

r̃
′
x

, (2.3)

∥∥∥∫ t

−∞
ei(t−τ)∆F (·, τ)dτ

∥∥∥
LqtL

r
x

≤ c‖F‖
Lq̃
′
t L

r̃
′
x

,

∥∥∥∫ +∞

−∞
ei(t−τ)∆F (·, τ)dτ

∥∥∥
LqtL

r
x

≤ c‖F‖
Lq̃
′
t L

r̃
′
x

.

Proof. We refer to [30] for a proof of this theorem. �

Remark 10. Theorem 9 also holds for U(t).

To prove Theorem 1 we need some results:

Proposition 11. Consider F : Rn
x × Rt → C. Then for 1 < p <∞,

‖E(F )‖Lp∞(Rn+1) ≤ ‖F‖Lp∞(Rn+1).

Instead of proving Proposition 11 we establish a more general result:

Lemma 12. Let A be a linear injective operator and suppose that for each
1 ≤ p < ∞ there exists 1 ≤ q = q(p) < ∞ such that A : Lp(Rn) → Lq(Rn)
is bounded. Then A is bounded from Lp∞(Rn) to Lq∞(Rn).

Proof. In fact, fix 1 ≤ p < ∞. Take 1 ≤ p0, p1 < ∞, and 0 < θ <
1 such that 1

p = 1−θ
p0

+ θ
p1

. By Theorem 7 we have ‖A(f)‖Lp∞(Rn) =
‖A(f)‖(Lp0 ,Lp1 )θ∞ .

If f = f0 + f1 ∈ Lp0(Rn) + Lp1(Rn), then

A(f) = A(f0) +A(f1) ∈ Lq0(Rn) + Lq1(Rn),
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and
‖A(fj)‖Lqj (Rn) ≤ ‖fj‖Lpj (Rn), j = 0, 1.

So

K(t, A(f)) = inf
A(f)=F0+F1

(‖F0‖Lq0 (Rn) + t‖F1‖Lq1 (Rn))

≤ inf
A(f)=A(f0)+A(f1)

(‖A(f0)‖Lq0 (Rn) + t‖A(f1)‖Lq1 (Rn))

≤ inf
A(f)=A(f0)+A(f1)

(‖f0‖Lp0 (Rn) + t‖f1‖Lp1 (Rn)).

Since A is injective, A(f) = A(f0) + A(f1) ⇒ f = f0 + f1 Lebesgue almost
everywhere. Then

K(t, A(f)) ≤ inf
f=f0+f1

(‖f0‖Lp0 (Rn) + t‖f1‖Lp1 (Rn)) = K(t, f).

Using Theorem 7 once more we obtain the result. �

Observe that since the linear operator E defined in (1.3) is injective and
satisfies

‖E(F )‖Lq(Rn+1) ≤ ‖F‖Lq(Rn+1)

for all 1 < q <∞ (see [38]), Proposition 11 will be a consequence of Lemma
12. Now we define two integral operators:

G(F )(x, t) =
∫ t

0
U(t− s)F (·, s)(x)ds, (2.4)

and

(TT ∗F )(x, t) =
∫ +∞

−∞
U(t− τ)F (x, τ)dτ, (2.5)

where U(t) is the group defined in (1.6). We prove the following properties
about them:

Proposition 13. Let 1 ≤ p, r <∞ such that
1
p
− 1
r

=
2

n+ 2
,

and
2(n+ 1)

n
< r <

2(n+ 1)(n+ 2)
n2

.

Then

‖G(F )‖Lr∞(Rn+1) ≤ c‖F‖Lp∞(Rn+1), (2.6)

and

‖TT ∗(F )‖Lr∞(Rn+1) ≤ c‖F‖Lp∞(Rn+1). (2.7)
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Proof. To prove Property (2.6) we need Theorem 9 (with U(t) instead of
eit∆) and the interpolation theorem. In fact, taking r = q and r̃

′
= q̃

′
=: p

in Theorem 9, the hypothesis (2.1) becomes

1
p
− 1
r

=
2

n+ 2
,

and the inequality (2.3) becomes

‖G(F )‖Lr(Rn+1) ≤ c‖F‖Lp(Rn+1). (2.8)

The restriction 2(n+1)
n < r < 2(n+1)(n+2)

n2 comes from hypothesis (2.2).
The result follows applying Lemma 12 to inequality (2.8). Property (2.7)

is proved exactly the same way. �

Now we are ready to prove the our main result:

Proof of Theorem 1. Consider the following operator:

(Φu)(t) = U(t)u0 − iG(χ|u|αu+ buE(|u|α))(t), (2.9)

G as in (2.4). We want to use the Picard fixed-point theorem to find a
solution of u = Φ(u) in

B(0, 3δ1) = {f ∈ L
α(n+2)

2
∞(Rn+1) : ‖f‖

L
α(n+2)

2 ∞(Rn+1)
≤ 3δ1}.

To prove Φ(B(0, 3δ1) ⊂ B(0, 3δ1), take u ∈ B(0, 3δ1). Using the hypothesis
‖U(t)u0‖

L
α(n+2)

2 ∞(Rn+1)
< δ1 and Proposition 13 combined with the defini-

tion Φ(·) in (2.9), we obtain

‖Φ(u)‖
L
α(n+2)

2 ∞(Rn+1)

≤ 2
(
δ1 + ‖|u|αu‖

L
α(n+2)
2(α+1)

∞
(Rn+1)

+ ‖buE(|u|α)‖
L
α(n+2)
2(α+1)

∞
(Rn+1)

)
.

Applying Proposition 11 and Holder’s inequality we get

‖Φ(u)‖
L
α(n+2)

2 ∞(Rn+1)

≤ 2
(
δ1 + ‖u‖α+1

L
α(n+2)

2 ∞(Rn+1)
+ |b|‖u‖

L
α(n+2)

2 ∞(Rn+1)
‖u(t)‖α

L
α(n+2)

2 ∞(Rn+1)

)
.

Using that u ∈ B(0, 3δ1) and choosing 0 < δ1 � 1 we have

‖Φ(u)‖
L
α(n+2)

2 ∞(Rn+1)
≤ 2cδ1 + 4c(3δ1)α+1 + 4c|b|(3δ1)α+1 < 3δ1.
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Now we prove the contraction in B(0, 3δ1). Take u, v ∈ B(0, 3δ1):

Φ(u)− Φ(v) = iG(χ(|v|αv − |u|αu)) + iG
(
b(vE(|v|α)− uE(|u|α)

)
.

By Proposition 13 we get

‖Φ(u)− Φ(v)‖
L
α(n+2)

2 ∞(Rn+1)

≤ 2c
(
‖v(|v|α − |u|α)‖

L
α(n+2)
2(α+1)

∞
(Rn+1)

+ ‖|u|α(u− v)‖
L
α(n+2)
2(α+1)

∞
(Rn+1)

)
+ 2c|b|

(
‖E(|v|α)(v − u)‖

L
α(n+2)
2(α+1)

∞
(Rn+1)

+ ‖u(E(|v|α)− E(|u|α))‖
L
α(n+2)
2(α+1)

∞
(Rn+1)

)
.

Applying Holder’s inequality and Proposition 11, we obtain

‖Φ(u)− Φ(v)‖
L
α(n+2)

2 ∞(Rn+1)

≤ 2c
(
‖v‖

L
α(n+2)

2 ∞(Rn+1)
‖|v|α − |u|α‖

L
(n+2)

2 ∞(Rn+1)

+ ‖u‖α
L
α(n+2)

2 ∞(Rn+1)
‖u− v‖

L
α(n+2)

2 ∞(Rn+1)

)
+ 2c|b|

(
‖v‖α

L
α(n+2)

2 ∞(Rn+1)
‖u− v‖

L
α(n+2)

2 ∞(Rn+1)

+ ‖u‖
L
α(n+2)

2 ∞(Rn+1)
‖|v|α − |u|α‖

L
(n+2)

2 ∞(Rn+1)

)
.

Now we set g(u) = |u|α. It follows by the mean value theorem that

|g(u)− g(v)| ≤ c(α)(|u|α−1 + |v|α−1)|u− v|.

This property and Holder’s inequality imply that

‖|v|α − |u|α‖
L

(n+2)
2 ∞(Rn+1)

≤ c(α)
(
‖u‖α−1

L
α(n+2)

2 ∞(Rn+1)
‖u− v‖

L
α(n+2)

2 ∞(Rn+1)

+ ‖v‖α−1

L
α(n+2)

2 ∞(Rn+1)
‖u− v‖

L
α(n+2)

2 ∞(Rn+1)

)
.

Finally by the last inequality and the hypothesis u, v ∈ B(0, 3δ1) we get

‖Φ(u)− Φ(v)‖
L
α(n+2)

2 ∞(Rn+1)
≤ δα1 (c1 + c2|b|)‖v − u‖

L
α(n+2)

2 ∞(Rn+1)
.
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Again taking 0 < δ1 � 1 we get the contraction. �

Proof of Proposition 2. By hypothesis u ∈ L
α(n+2)

2
∞(Rn+1). So by

Holder’s inequality and Proposition 11, we have, |u|αu and uE(|u|α) in

L
α(n+2)
2(α+1)

∞(Rn+1).
Now, by Remark 8 we can write

|u|αu = f1 + f2 and uE(|u|α) = f3 + f4, (2.10)

where fj ∈ Lpj (Rn+1) for some

1 ≤ p1 <
α(n+ 2)
2(α+ 1)

< p2 <∞ and 1 ≤ p3 <
α(n+ 2)
2(α+ 1)

< p4 <∞.

Replacing (2.10) in (1.5) we get

u(t) = U(t)u0 + iχG(f1)(t) + iχG(f2)(t) + ibG(f3)(t) + ibG(f4)(t). (2.11)

Observe that from the decomposition (2.11) we have that u(t) ∈ S′(Rn).
Now, if we take φ ∈ S(Rn) then U(t)φ ∈ C(R : S(Rn)) and also G(φ)(t) ∈

C(R : S(Rn)). By duality we can extend U(t) to S′(Rn) and get U(t)φ ∈
C(R : S′(Rn)) for φ ∈ S′(Rn).

Using dominated convergence theorem we have G(φ)(t) ∈ C(R : S′(Rn))
for φ ∈ S′(Rn) and by (2.11)

u(t) ∈ C(R : S′(Rn)). (2.12)

Letting t→ 0 in (2.11) we get u(0) = u0.
Now we prove that u(t) satisfies the equation

iut + δux1x1 +
n∑
j=2

uxjxj = χ|u|αu+ buE(|u|α), (2.13)

in S′(Rn) for all t ∈ R :
Define F (u) := χ|u|αu+buE(|u|α). Note that by (2.10) and (2.12) we have

F (u)(t) ∈ C(R, S′(Rn)). Using the integral equation (1.5) and the definition
of the operator G in (2.4) we have the following expression for u(t)

u(t) = U(t)u0 + iG(Fu)(t). (2.14)

Using group properties, Lebesgue dominated convergence theorem and the
Lebesgue differentiation theorem combined with the expression of u(t) in
(2.14) we obtain that for any φ ∈ S(Rn)

i lim
h→0
〈u(t+ h)− u(t)

h
, φ〉 = 〈−(δ∂x1x1 +

n∑
j=2

∂xjxj )u(t) + F (u)(t), φ〉,
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where
〈f, g〉 =

∫
Rn
f(x)g(x)dx,

which proves (2.13).
To prove ‖u(t0)‖Y <∞, take r = α(n+2)

2 in inequality (2.7) of Proposition
13. Then we have

‖TT ∗F‖
L
α(n+2)

2 ∞(Rn+1)
≤ c‖F‖

L
α(n+2)
2(α+1)

∞
(Rn+1)

. (2.15)

From the last property and identity (6), ∀ t0 ∈ R we get

‖U(t)
∫ +∞

−∞
U(t0 − s)F (s)ds‖

L
α(n+2)

2 ∞(Rn+1)
≤ ‖F‖

L
α(n+2)
2(α+1)

∞
(Rn+1)

.

Now taking χ(0,t0)F instead of F in the last inequality we have

‖U(t)G(F )(t0)‖
L
α(n+2)

2 ∞(Rn+1)
≤ ‖F‖

L
α(n+2)
2(α+1)

∞
(Rn+1)

, (2.16)

where G was defined in (2.4).
Now taking t = t0 in the integral equation (1.5) and applying U(t) we

have

U(t)u(t0) = U(t+ t0)u0 + iU(t)G(χ|u|αu+ buE(|u|α))(t0).

Combining property (6), inequality (2.16) and the same arguments as in
Theorem 1 we obtain

‖U(t)u(t0)‖
L
α(n+2)

2 ∞(Rn+1)
≤ 2‖U(t)u0‖

L
α(n+2)

2 ∞(Rn+1)
+ 4‖u‖α+1

L
α(n+2)

2 ∞(Rn+1)

+ 4|b|‖u‖
L
α(n+2)

2 ∞(Rn+1)
‖u‖α

L
α(n+2)

2 ∞(Rn+1)
<∞.

Finally, to prove the last statement of the theorem we set

u+ = u0 + i

∫ ∞
0

U(−τ)(χ|u|αu+ buE(|u|α))(τ)dτ.

It follows from inequality (2.15) that

‖U(t)u+‖
L
α(n+2)

2 ∞(Rn+1)

≤2
(
‖U(t)u0‖

L
α(n+2)

2 ∞(Rn+1)
+ ‖(χ|u|αu+ buE(|u|α))‖

L
α(n+2)
2(α+1)

∞
(Rn+1)

)
<∞.

We deduce from the decompositions in (2.10) that

U(−t)u(t)− u+ =
∫ ∞
t

U(−τ)(χ|u|αu+ buE(|u|α))(τ)dτ → 0



The Davey Stewartson system in weak Lp spaces 895

in S′(Rn) as t→∞. The result for t→ −∞ is proved similarly. �

3. Self-similar solutions

In this section we find self-similar solutions to (1.2) for δ > 0. Without
loss of generality we can suppose δ = 1, so our equation becomes{

iut + ∆u = χ|u|αu+ buE(|u|α)
u(x, 0) = u0(x) ∀x ∈ Rn, n = 2, 3, t ∈ R. (3.1)

We will need the following proposition:

Proposition 14. Let ϕ(x) = |x|−p where 0 < Re p < n. Then eit∆ϕ is given
by the explicit formula below for x 6= 0 and t > 0:

eit∆ϕ(x) =|x|−p
m∑
k=0

Ak(a, b)ekπi/2
(
|x|2

4t

)−k
+ |x|−pAm+1(a, b)

(
|x|2

4t

)−m−1 (m+ 1)eaki/2

Γ(m+ 2− b)

×
∫ ∞

0

∫ 1

0
(1− s)m

(
−i− 4tsτ

|x|2

)−a−m−1

e−ττm+1−bds dτ

+ ei|x|
2/4t|x|−n+p(4t)

n
2
−p

l∑
k=0

Bk(b, a)e−(n+2k)πi/4

(
|x|2

4t

)−k
+ ei|x|

2/4t|x|−n+p(4t)
n
2
−pBl+1(b, a)

(
|x|2

4t

)−l−1 (l + 1)eaki/2

Γ(l + 2− b)

×
∫ ∞

0

∫ 1

0
(1− s)l

(
−i− 4tsτ

|x|2

)−b−l−1

e−ττ l+1−ads dτ,

where a = p/2, b = (n − p)/2, m, l ∈ N such that m + 2 > Re b and
l + 2 > Re a, and

Ak(a, b) =
Γ(a+ k)Γ(k + 1− b)

Γ(a)Γ(1− b)k!
, Bk(b, a) =

Γ(b+ k)Γ(k + 1− a)
Γ(a)Γ(1− a)k!

,

where Γ denotes the gamma function.

Proof. We refer to [10] for a proof of this proposition. �

We already know that a self-similar solution must have a homogeneous
initial condition with degree −2/α. So the idea is to prove that u0(x) =
ε|x|−2/α ∈ Y , where 0 < ε � 1. Then by Theorem 1 and Proposition 2
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we have existence and uniqueness for equation (3.1) in Y . Since u(x, t)
and β2/αu(βx, β2t) are both solutions, we must have u = uβ and therefore
self-similar solutions in Y .

To prove that u0 ∈ Y , we consider the homogeneous problem with initial
condition
u0(x) = |x|−2/α:{

iut + ∆u = 0
u(x, 0) = |x|−2/α ∀x ∈ Rn, n = 2, 3, t ∈ R. (3.2)

We know that the solution to the equation (3.2) is given by

u(x, t) = U(t)u0(x),

where U(t) = eit∆.

Since uβ(x, t) = β2/αu(βx, β2t), β > 0 is also a solution; we must have

β2/αu(βx, β2t) = U(t)u0(x) = u(x, t).

Taking β = 1/
√
t we get

u(x, t) = t−1/αf(x/
√
t), (3.3)

where f(x) = u(x, 1).
By Proposition 14 we have that for α > 2/n

|f(x)| ≤ c(1 + |x|)−σ where σ =
{

2/α; α ≥ 4/n
n− 2/α; α < 4/n. (3.4)

Next, we calculate α(λ, u) = |{(x, t) : |u(x, t)| > λ}|.
By (3.3) and (3.4)

α(λ, u) ≤
∫
{(x,t):|t−1/α

“
1+
|x|√
t

”−σ
|>λ}

d(x, t)

≤
∫
{(x,t):0≤t<λ−α and |x|<t1/2[(tλα)−1/ασ−1]}

d(x, t)

≤ cλ−n/
∫ λ−α

0
t
n
2
− n
σα [1− (tλα)

1
σα ]ndt ≤ λ

−α(n+2)
2 .

Therefore, ‖U(·)u0‖
L
α(n+2)

2 ∞(Rn+1)
≤ c. Choosing 0 < ε � 1 and taking the

initial condition u0(x) = ε|x|−2/α we conclude the result.
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