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Abstract. We are concerned with the two-power nonlinear Schrödinger-
type equations with non-local terms. We consider the framework of
Sobolev–Lorentz spaces which contain singular functions with infinite-
energy. Our results include global existence, scattering and decay prop-
erties in this singular setting with fractional regularity index. Solutions
can be physically realized because they have finite local L2-mass. More-
over, we analyze the asymptotic stability of solutions and, although the
equation has no scaling, show the existence of a class of solutions asymp-
totically self-similar w.r.t. the scaling of the single-power NLS-equation.
Our results extend and complement those of Weissler (Adv Differ Equ
6(4):419–440, 2001), particularly because we are working in the larger
setting of Sobolev-weak-Lp spaces and considering non-local terms. The
two nonlinearities of power-type and the generality of the non-local terms
allow us to cover in a unified way a large number of dispersive equations
and systems.
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1. Introduction

We consider the initial value problem (IVP) associated with the two-power
nonlinear Schrödinger equation with non-local term

{
i∂tu+ Lu = a|u|αu+ bE(|u|γ)u,
u(x, 0) = u0(x)

(x, t) ∈ Rn × R, n ≥ 1, (1.1)
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where u = u(x, t) is a complex-valued function, a and b are complex constants,
0 < α < γ are positive real numbers, E is a non-local linear operator, and L
is a linear operator defined through its Fourier transform as

L̂u(ξ) = q(ξ)û, ξ ∈ Rn.

Throughout the paper we assume the following:
(H1) the function q is real and homogeneous of degree d, that is,

q(λξ) = λdq(ξ), λ > 0.

(H2) The function G(x) =
∫
Rn ei(xξ+q(ξ))dξ belongs to L∞(Rn).

(H3) The operator E is bounded in L(p,∞)(Rn), for 1 < p < ∞, and commutes
with fractional derivatives.
In (H3), L(p,∞)(Rn) stands for the so-called weak-Lp spaces which, in view of
Chebyshev’s inequality, can be regarded as natural extensions of Lp-spaces. As
will be seen later, conditions (H1)–(H2) are sufficient to prove dispersive-type
estimates, which in turn are used to deal with the linear part of the associated
integral equation. Also, (H3) is sufficient to handle with the nonlinear terms
involving the operator E in our functional setting.

When L stands for the Laplacian operator and b = 0, the equation in
(1.1) reduces to the well-known single-power nonlinear Schrödinger equation

i∂tu+ ∆u = a|u|αu, (1.2)

which appears in many physical situations. So, at a first glance, (1.1) can be
seen as a mathematical extension of (1.2). However, several physical relevant
models can be written in the form (1.1). Indeed, let us recall some examples.
When n = 2, L = m1∂2

x1
+ ∂2

x2
, m1 ∈ R \ {0}, and E is defined in Fourier

variables as

Ê(f)(ξ) =
ξ21

ξ21 +m2ξ22
f̂(ξ), ξ = (ξ1, ξ2), m2 > 0, (1.3)

(1.1) reduces to the so-called Davey-Stewartson (DS) system, which was de-
rived in [16] (see also [24]) to model the evolution of weakly nonlinear water
waves that travel predominantly in one direction, but in which the wave am-
plitude is modulated slowly in two horizontal directions. A generalized DS
system describing the interaction of longwaves and shortwaves propagating in
an infinite elastic medium (see [3]) can also be written in the form (1.1), where
again L = m1∂2

x1
+ ∂2

x2
, m1 ∈ R \ {0}, and E is defined by

Ê(f)(ξ) =
λξ41 + (1 +m2 − 2&)ξ21ξ22 +m3ξ42

(ξ21 +m2ξ22)(λξ21 +m3ξ42)
f̂(ξ), (1.4)

with the real constants m2,m3,λ, and & satisfying the relation

(λ − 1)(m3 − m2) = &2.

An example in dimension n = 3 is given by the Shrira system (see [42]), which
models the evolution of a three-dimensional packet of weakly nonlinear internal
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gravity waves propagating obliquely at an arbitrary angle to the vertical. In
this case,

L =
ωkk

2
∂2
x1

+
ωll

2
∂2
x2

+
ωnn

2
∂2
x3

+ ωnk∂
2
x1x3

with ωkk &= 0, ωnn &= 0, ωll(ωkkωnn − ω2
nk) &= 0, and E is given by

Ê(f)(ξ) = ν
ξ22

ξ21 + ξ22
f̂(ξ), ξ = (ξ1, ξ2, ξ3), ν ∈ R. (1.5)

Another three-dimensional example appears in the description of Bose-Einstein
condensation of dipolar quantum gases (see [1,36]). In such a case, L is the
Laplacian operator and E is given by

Ê(f)(ξ) =
4π
3

2ξ23 − ξ21 − ξ22
|ξ|2 f̂(ξ), ξ = (ξ1, ξ2, ξ3). (1.6)

For additional information concerning the above models and generaliza-
tions, we refer the reader to [2,3,14,16,21,24–31,42,47]). Note, in particular,
that the symbols of the operators E in (1.3), (1.4), and (1.6) are homogeneous
of degree zero. Hence, one can apply the Calderon-Zygmund theory (see, for
instance, [22]) to see that E is bounded from Lq to Lq, for any 1 < q < ∞; so,
after applying real interpolation we see that (H3) holds. For E defined as in
(1.5) we cannot directly apply the Calderon-Zygmund theory. However, by in-
terpolation with BMO and Hardy spaces we can still prove that E is bounded
from Lq to Lq, for any 1 < q < ∞ (see, [[25], page 184]), implying that (H3)
also holds in this case. In addition, recalling that

∫

R
ei(aη2+yη) dη =

√
π

|a|e
−i y2

4a ei
π
4 sgn(a), a, y ∈ R,

it is easily seen that (H2) also holds in the above examples.
Notice also that we are able to consider higher-order operators L, as we

take the parameter d ≥ 2, such as polyharmonic operators. In particular, our
results also apply to the fourth-order nonlinear Schrödinger equation

i∂tu+ µ∆2u = a|u|αu, µ &= 0,

which was introduced in [32,33] to take into account the role of fourth-order
dispersion in the propagation of intense laser beams in a bulk medium with
Kerr nonlinearity. To see that (H2) also holds here, we refer the reader to [5].

Equation (1.2) is one of most studied dispersive equation. To avoid too
many references we cite, for instance, the books [8,20,37], where the reader will
find a large class of results in different function spaces. We only emphasize that
results on self-similar solutions, among others, were obtained, for instance, in
[9–11,41,43]. Especially when L is the Laplacian and E is the identity operator
I, (1.1) has been studied in recent years, to cite a few works, see [12,38,39,
44] and their references. The most disseminated results are obtained in the
H1-setting, which provides finite energy solutions. The studied topics cover
local and global well-posedness, scattering, radial symmetry and asymptotic
behavior of solutions. However, in [47] solutions of (1.1) with E = I were
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obtained in the spaces Hs,q(Rn) = (I − ∆)−s/2Lq(Rn), with s > 0 and 1 <
q < ∞, provided that the initial data satisfies some additional conditions.

For a general operator satisfying the assumption (H3), existence and
asymptotic properties in the single-power case γ = α were analyzed, in the
context of weak Lebesgue spaces, in [4,7] (see also [46]).

A substantial mathematical difference between (1.1) and (1.2) is the fail-
ure of scaling in (1.1); it is easily seen that the map

u(x, t) '→ uλ(x, t) := λ2/αu
(
λx,λ2t

)
, λ > 0 (1.7)

leaves (1.2) invariant (i.e., if u is solution so is uλ) but the same is not true
for (1.1) (with L = ∆ and d = 2).

Our main aim here is twofold: to provide a larger class for global existence
and uniqueness by considering the framework of Sobolev-weak-Lp spaces with
fractional regularity index 0 < s < 1 (see Sect. 2 for the definitions), which
contain singular functions with infinite-energy and allow to analyze self-similar
asymptotics; and to consider non-local operators in the nonlinearities which
allow to address in a unified way a number of dispersive models, including the
above examples.

The aspects above, in turn, bring several additional difficulties. Thus we
need to extend some well known results in the context of Lebesgue spaces to
the spaces we are interested in, as well as to take into account the influence of
the nonlocal operators in the estimates. We believe that those extended results
have prospects to be applied in many other situations.

Also, we obtain scattering, decay properties of solutions and asymptotic
stability results in that singular setting. In Remark 3.5, we point out that the
data-solution map is Lipschitz continuous and then we have in fact a well-
posedness result in the sense of Hadamard. Since weak-Lp spaces embed into
L2
loc for p > 2, solutions have finite local L2-mass and can be realized in

physical space in any region with finite measure. In particular, all convergence
and stability properties obtained here occur in the sense of L2-mass in any
finite-volume region, no matter how large it is.

Asymptotic stability results for NLS type equations and systems are use-
ful for characterizing solutions that, after initial perturbations, essentially re-
covers their profiles at large times. Asymptotic (or not) self-similarity type
symmetries appear in physical situations and are used to describe phenomena
in different spatial-temporal scales, revealing internal symmetry and struc-
ture in a system (see [17,18]). For instance, in [19], they show that a type of
self-similar parabolic pulse, called similaritons, is an asymptotic solution to a
NLS-like equation with gain. Although the equation (1.1) has no scaling, we
are able to prove the existence of a class of solutions asymptotically self-similar
with respect to the scaling (1.7) of the equation i∂tv+Lv = a|v|αv, as t → ∞.
This means that, for large times, those solutions approximately preserve the
self-similar structure of an important related model. Our self-similar asymp-
totics correspond to homogeneous initial data u0 of degree −d/α and can be
expressed as

v(x, t) = t−1/αV (xt−1/d), (1.8)
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where the profiles V belong to some weak-Lp spaces. This provides another
motivation in order to consider weak-Lp and Sobolev-weak-Lp spaces since
they are the natural environment for homogeneous functions and allow the
analysis of self-similar asymptotics and pulses as in [17,18] and [19]. Moreover,
the existence of self-similar asymptotics can also be used to study wave collapse
(blow up solutions) by using the pseudo-conformal transformation (see [9]).
This singular behavior has appeared in the context of nonlinear optics and
been observed in numerical experiments for some Schrödinger-type equations
and systems (see, e.g., [35]). We believe our solutions may be obtained from
numerical methods because they are the limit of a Picard sequence come from
a contraction argument and are L2

loc-stable.
As usual, to study the IVP (1.1) we use its equivalent integral formulation

u(t) = U(t)u0 + i

∫ t

0
U(t − s)(a|u|αu+ bE(|u|γ)u)(s)ds, (1.9)

where U(t)u0 is the solution of the linear problem
{
i∂tu+ Lu = 0,
u(x, 0) = u0(x)

(x, t) ∈ Rn × R,

that is,

U(t)u0(x) =
∫

Rn

ei(xξ+tq(ξ))û0(ξ)dξ.

In view of our assumptions (H1) and (H2) the operator U(t) defines a unitary
group on Hs(Rn), for any s ∈ R (see [25]). Without loss of generality, from now
on we shall consider t ≥ 0 in (1.9) and in time-dependent functional spaces
dealt with. The case t ≤ 0 can be treated in a complete parallel way.

To simplify the calculations let us rewrite the integral equation (1.9) as

u(t) = U(t)u0 +B(u),

where

B(u) = i

∫ t

0
U(t − s)(a|u|αu+ bE(|u|γ)u)(s)ds. (1.10)

The paper is organized as follows. In Sect. 2 we introduce some notation,
recall some results in Lebesgue spaces and prove their extensions to Sobolev–
Lorentz spaces. These extensions (and interpolation) will play a key role in
Sect. 3, where we prove our main results: global existence, scattering, decay
properties, asymptotic stability, and existence of asymptotically self-similar
solutions for the integral equation (1.9).

2. Notation and preliminaries

Let us begin this section by introducing the notation used throughout the
paper. We use C or c to denote various constants that may vary line by line.
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We denote by ‖ · ‖Lp , 1 ≤ p ≤ ∞, the usual Lebesgue Lp-norm. The Fourier
transform of a function f = f(x), is defined by

(Ff)(ξ) = f̂(ξ) =
∫

Rn

e−ix·ξf(x)dx.

The inverse Fourier transform of a function g = g(ξ) is denoted by (F−1g)(x) =
ǧ(x). In S ′(Rn) (the space of tempered distributions) the Fourier transform
is understood in the usual sense. S(Rn) will denote the class of all Schwartz
functions.

The standard Lorentz space is denoted by L(p,q), 0 < p, q ≤ ∞ . In
particular, (the weak Lebesgue spaces) L(p,∞) = L(p,∞)(Rn), 1 ≤ p < ∞, is
defined as

L(p,∞) =
{
f : Rn → C measurable ; ‖f‖∗

L(p,∞) := sup
λ>0

λα(λ, f)1/p < ∞
}
,

where

α(λ, f) = µ
(
{x ∈ Rn; |f(x)| > λ}

)
, and µ is the Lebesgue measure.

The quantity ‖ · ‖∗
L(p,∞) is a quasi-norm in L(p,∞). As is well-known, for 1 <

p < ∞ there exists an equivalent norm ‖ · ‖L(p,∞) in L(p,∞) (i.e., it induces the
same topology than ‖ ·‖∗

L(p,∞)), such that L(p,∞) becomes a Banach space (see,
for instance, Remark 1.4.12 in [22]). More precisely, we can define ‖ · ‖L(p,∞)

as
‖f‖L(p,∞) = sup

t>0
t
1
p f∗∗(t)

where

f∗∗(t) =
1
t

∫ t

0
f∗(s)ds and f∗(t) = inf{λ > 0 : α(λ, f) ≤ t }.

Moreover,

Lp ↪→ L(p,∞)

with continuous embedding.
We observe that if 1 < p, q, r < ∞, then the Hölder inequality

‖fg‖L(r,∞) ≤ ‖f‖L(p,∞)‖g‖L(q,∞) ,
1
p
+

1
q
=

1
r
,

holds (see [40]). Also, if 1 ≤ r < ∞ and 1 < q, p < ∞, then the Young
inequality

‖f ∗ g‖L(q,∞) ≤ C‖g‖L(r,∞)‖f‖L(p,∞) ,
1
q
=

1
p
+

1
r

− 1, (2.1)

is valid (see also [22, pages 21 and 73]), where L(r,∞) should be replaced by
Lr when r = 1.

If (X1,X2) is a pair of compatible Banach spaces, θ ∈ (0, 1), and 1 ≤
q ≤ ∞, let (X1,X2)θ,∞ denote the interpolation space with respect to the
couple (X1,X2) using the K-Method (see e.g., [6,22], or [45]). We recall that
L(p,q) can be defined as an interpolation between two Lebesgue spaces. More
precisely, we have:



NoDEA On the two-power nonlinear Schrödinger equation Page 7 of 29 39

Theorem 2.1. (Interpolation theorem) Given 0 < p0 < p1 ≤ ∞, for any p, q
and θ such that p0 < q ≤ ∞, 1

p = 1−θ
p0

+ θ
p1

and 0 < θ < 1 we have:

(Lp0 , Lp1)θ,q = L(p,q) with ‖f‖(Lp0 ,Lp1 )θ,q
= ‖f‖L(p,q) ,

where, for q < ∞,

(Lp0 , Lp1)θ,q =

{
a is Lebesgue measurable; ‖a‖(Lp0 ,Lp1 )θ,q

:=
(∫ ∞

0
t−θk(t, a)q

dt

t

) 1
q

< ∞
}

and

(Lp0 , Lp1)θ,∞ =
{
a is Lebesgue measurable; ‖a‖(Lp0 ,Lp1 )θ,∞

:= sup
t>0

t−θk(t, a) < ∞
}
,

with

k(t, a) = inf
a=a0+a1

(‖a0‖Lp0 + t‖a1‖Lp1 ).

Proof. We refer the reader to [6, Theorem 5.2.1]. !

Remark 2.2. Theorem 2.1 also holds if we replace the spaces Lpk = Lpk(Rn)
by Lpk(B) = Lpk(Rn;B), the space of all measurable functions with values in
the Banach space B. In this case, Lp,q(B) = Lp,q(Rn;B) is the interpolation
space.

As usual, the operators J−s and Λ−s will denote the Bessel and Riesz
potentials of order s, thus

Jsf(x) = {(1 + |ξ|2)s/2f̂}∨(x)

and

Λsf(x) = (|ξ|sf̂)∨(x).

The base space we are interested in is presented next. We define the homoge-
neous Sobolev–Lorentz space Ḣs

p,∞ to be the set of all tempered distributions
f such that Λsf belongs to L(p,∞), that is,

Ḣs
p,∞ := {f ∈ S ′; ‖Λsf‖L(p,∞) < ∞}.

The inhomogeneous space Hs
p,∞ is defined in a similar fashion by setting

Hs
p,∞ := {f ∈ S ′; ‖Jsf‖L(p,∞) < ∞}.

Let us recall the Littlewood–Paley theory: let ϕ̂ ∈ C∞
0 (Rn) be a function

satisfying 0 ≤ ϕ̂ ≤ 1, ϕ̂ = 1 if |ξ| ≤ 1, and ϕ̂ = 0 if |ξ| > 2. Define

ψ̂(ξ) = ϕ̂(ξ) − ϕ̂(2ξ), ψ̂j(ξ) = ψ̂(2−jξ), j ∈ Z,
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so that∑

j∈Z
ψ̂j(ξ) = 1, ξ &= 0, and supp (ψ̂j) ⊂ {2j−1 ≤ |ξ| ≤ 2j+1}.

The Littlewood–Paley multipliers ∆j are defined as

∆jf = (ψ̂j f̂)∨ = ψj ∗ f, j ∈ Z. (2.2)

Also, let η̂ be another smooth function supported in {1/4 < |ξ| < 4} such that
η̂ = 1 on supp(ψ̂). We define ∆̃j like ∆j with η instead of ψ. Thus, the identity

∆̃j∆j = ∆j (2.3)

holds. With this notation in hand, the Littlewood–Paley function defines an
equivalent norm in the Lebesgue spaces. That is to say:

Theorem 2.3. (Littlewood–Paley) Let 1 < p < ∞. Then there exist positive
constants cp and Cp such that, for any f ∈ Lp(Rn),

cp‖f‖p ≤ ‖




∑

j

|∆jf |2



1/2

‖p ≤ Cp‖f‖p.

Proof. See Theorem 5.1.2 in [22]. !
Next, we recall that the Hardy–Littlewood maximal function is defined

by

Mf(x) = sup
r>0

1
µ(Br)

∫

Br

|f(x − y)|dy. (2.4)

Here f is any locally integrable function and Br is the Euclidean ball of radius
r centered at the origin. A well known property of M is given below.

Theorem 2.4. The operator M is weak-type (1, 1) and strong-type (p, p), 1 <
p ≤ ∞.

Proof. See Theorem 2.1.6 in [22]. !
In what follows we denote by Lp(l2), 1 < p < ∞, the space of all sequences

(fk) of measurable functions on Rn satisfying

‖(fk)‖Lp(l2) =

∥∥∥∥∥∥

(
∑

k

|fk|2
) 1

2
∥∥∥∥∥∥
Lp

< ∞.

Given a linear operator T acting on Lp(Rn) and taking values in the set
of measurable functions, we can define an l2-valued extension, said as

−→
T , by

setting
−→
T ({fk}k) := {Tfk}k.

Lemma 2.5. If T is a bounded liner operator from Lp to Lq, 1 < p, q < ∞,
then

−→
T is also a bounded linear operator from Lp(l2) to Lq(l2).

Proof. See Theorem 4.5.1 in [22]. !



NoDEA On the two-power nonlinear Schrödinger equation Page 9 of 29 39

As an immediate consequence of Lemma 2.5 and Theorem 2.4 the Hardy–
Littlewood maximal function has a bounded l2-valued extension (See Example
9.5.9 in [23]). More precisely.

Corollary 2.6. If
−→
M denotes the l2-valued extension of M then, for 1 < p < ∞,

‖−→
M({fk})‖Lp(l2) ≤ Cp‖{fk}‖Lp(l2), (2.5)

for some constant Cp > 0.

By using the real interpolation method (see, for instance, [6] or [22] for
details) we will extend the previous results to weak Lebesgue spaces. We start
with the Littlewood–Paley inequality.

Lemma 2.7. Let 1 < p < ∞. Then there exist positive constants cp and Cp

such that, for any f ∈ L(p,∞)(Rn),

cp‖f‖L(p,∞) ≤ ‖




∑

j

|∆jf |2



1/2

‖L(p,∞) ≤ Cp‖f‖L(p,∞) . (2.6)

Proof. We will present two different proofs based on the real interpolation
method.

First Proof. Let us begin by proving the second inequality. Define the
following linear operator

T : Lp(Rn) → Lp(l2)
T (f) = (∆jf)j .

(2.7)

From Theorem 2.3 we know that T is well-defined. Now, taking 1 < p0 <
p1 < ∞ we also have from Theorem 2.3 that T is bounded from Lpk(Rn)
to Lpk(l2), k = 0, 1. Applying the real interpolation method we obtain that
T is also bounded from (Lp0(Rn), Lp1(Rn)θ,∞ to (Lp0(l2), Lp1(l2)θ,∞ where
0 < θ < 1. Since

(Lp0(Rn), Lp1(Rn)θ,∞ = L(p,∞)(Rn)

and

(Lp0(l2), Lp1(l2)θ,∞ = L(p,∞)(l2),

where 1
p = θ

p0
+ 1−θ

p1
, we get the result.

To prove the first inequality we define, for each 1 < p < ∞, the following
subspace of Lp(l2):

Ap = {f̃ ∈ Lp(l2);∃f ∈ Lp(Rn) s.t. f̃ = (∆jf)j}.

From Theorem 2.3 we know that (Ap, ‖ · ‖Lp(l2)) is a Banach space. Now
consider the linear operator T1 defined by

T1 : Ap → Lp(Rn)

T1(f̃) :=
∑

j

∆jf = f.
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Using the same idea as before we take 1 < p0 < p1 < ∞. From Theorem 2.3 we
obtain that T1 is bounded from Apk to Lpk(Rn), k = 0, 1. From real interpola-
tion we have that T1 is bounded from (Ap0 , Ap1)θ,∞ to (Lp0(Rn), Lp1(Rn)θ,∞.
Thus, it suffices to prove that (Ap0 , Ap1)θ,∞ = Ap,∞, where

Ap,∞ = {f̃ ∈ L(p,∞)(l2);∃f ∈ L(p,∞)(Rn) s.t. f̃ = (∆jf)j}.

Let f̃ ∈ Ap,∞. Then f̃ = (∆jf)j for some f ∈ L(p,∞)(Rn). Therefore,

‖f̃‖(Ap0 ,Ap1 )θ,∞ = sup
t>0

t−θ inf
f̃=f̃0+f̃1

(‖f̃0‖Lp0 (l2) + ‖f̃1‖Lp1 (l2)).

Since f̃0 ∈ Ap0 and f̃1 ∈ Ap1 ,

f̃0 = (∆jf0)j , for some f0 ∈ Lp0(Rn)

and

f̃1 = (∆jf1)j , for some f1 ∈ Lp1(Rn).

So,

‖f̃‖(Ap0 ,Ap1 )θ,∞

= sup
t>0

t−θ inf
(∆jf)j=(∆jf0)j+(∆jf1)j

(‖(∆jf0)j‖Lp0 (l2) + ‖(∆jf1)j‖Lp1 (l2))

and, in view of Theorem 2.3,

‖f̃‖(Ap0 ,Ap1 )θ,∞ ≤ C sup
t>0

t−θ inf
f=f0+f1

(‖f0‖Lp0 (Rn) + ‖f1‖Lp1 (Rn))

= C‖f‖L(p,∞)(Rn) < ∞.

On the other hand, let f̃ ∈ (Ap0 , Ap1)θ,∞. Then f̃ = f̃0 + f̃1, with f̃0 ∈ Ap0

and f̃1 ∈ Ap1 . We will show that f̃ ∈ Ap,∞. In fact,

‖f̃‖Ap,∞ = sup
t>0

t−θ inf
f̃=F0+F1

(‖F0‖Lp0 (l2) + ‖F1‖Lp1 (l2)).

Since Ap0 ⊂ Lp0(l2) and Ap1 ⊂ Lp1(l2) we conclude that

‖f̃‖Ap,∞ ≤ C sup
t>0

t−θ inf
f̃=f̃0+f̃1

(‖f̃0‖Lp0 (l2) + ‖f̃1‖Lp1 (l2)),

where f̃0 ∈ Ap0 and f̃1 ∈ Ap1 . Therefore

‖f̃‖Ap,∞ ≤ C‖f̃‖(Ap0 ,Ap1 )θ,∞ < ∞,

which shows the desired result.
Second Proof. Define the norms

|||f |||Lp = ‖




∑

j

|∆jf |2



1/2

‖Lp and |||f |||L(p,∞) = ‖




∑

j

|∆jf |2



1/2

‖L(p,∞) .

From Theorem 2.3, ||| · |||Lp is an equivalent norm in Lp, 1 < p < ∞. This means
that the identity operator I : (Lpk , ||| · |||Lpk ) → (Lpk , ‖ · ‖Lpk ) is continuous for
any 1 < p1 < p2 < ∞. Hence, by real interpolation, I also is continuous from
(L(p,∞), ||| · |||L(p,∞)) to (L(p,∞), ‖ · ‖L(p,∞)), p1 < p < p2, which means that the
first inequality in (2.6) holds. Here, to see that the interpolation space between
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(Lp1 , ||| · |||Lp1 ) and (Lp2 , ||| · |||Lp2 ) is indeed (L(p,∞), ||| · |||L(p,∞)) it is sufficient
to recall that being Lp a retract of Lp(l2), (Lp1 , Lp2)θ,∞ is also a retract of
(Lp1(l2), Lp2(l2))θ,∞ (see Theorems 6.4.2 and 6.4.3 in [6]).

The second inequality is obtained in a similar fashion, which concludes
the proof. !
Remark 2.8. In view of Lemma 2.7 one can see that the expression

‖{2js∆jf}‖L(p,∞)(l2) =

∥∥∥∥∥∥∥




∑

j

22js|∆jf |2



1/2

∥∥∥∥∥∥∥
L(p,∞)

defines an equivalent norm in Ḣs
p,∞. Indeed, note that 2js∆jf = ∆σ

j fs, where
fs = Λsf and ∆σ

j is the “Littlewood–Paley multiplier” given by ∆̂σ
j f(ξ) =

σ̂(2−jξ)f̂ , with σ̂(ξ) = |ξ|−sψ̂j(ξ). Thus applying Lemma 2.7 with ∆σ
j instead

of ∆j , we obtain

‖{2js∆jf}‖L(p,∞)(l2) = ‖{∆σ
j fs}‖L(p,∞)(l2) ∼ ‖fs‖L(p,∞) .

The interested reader will find the details (for Lp instead of L(p,∞)) in [23,
Theorem 6.2.7]. In particular, this shows that the space Ḣs

p,∞ can be obtained
as an interpolation space between two Sobolev spaces. More precisely

Ḣs
p,∞ = (Ḣs

p0
, Ḣs

p1
)θ,∞, p0 &= p1, 0 < θ < 1,

where 1
p = 1−θ

p0
+ θ

p1
(see Theorem 1 in [45, page 184]).

In what follows, the space L(p,∞)(l2) is defined similarly to Lp(l2) when
replacing ‖ · ‖Lp by ‖ · ‖L(p,∞) .

Lemma 2.9. If
−→
M denotes the l2-valued extension of M then, for 1 < p < ∞,

and {fk} ∈ L(p,∞)(l2),

‖−→
M({fk})‖L(p,∞)(l2) ≤ Cp‖{fk}‖L(p,∞)(l2).

Proof. It suffices to follow the ideas in the proof of the previous lemma. From
inequality (2.5) we have that

−→
M is bounded from Lp0(l2) to Lp0(l2) and from

Lp1(l2) to Lp1(l2), where 1 < p0 < p1 < ∞. From real interpolation we get the
result. !

Next result is an adapted version to weak Lebesgue spaces of the Sobolev
embedding. Since f(x) = {|ξ|−sf̂s}∨(x) = Is(fs)(x), where fs(x) = Λsf(x)
and Is = Λ−s = |x|−(n−s)∗, it can be proved by using Young’s inequality for
convolution operators in Lorentz spaces (see (2.1) and [22, page 73]).

Lemma 2.10. Let s be a real number with 0 < s < n and let 1 ≤ p < q < ∞
satisfy

s =
n

p
− n

q
. (2.8)

Then there exists a positive constant C = C(n, s, p) such that, for any f ∈
Ḣs

p,∞,
‖f‖L(q,∞) ≤ C‖Λsf‖L(p,∞) . (2.9)
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Remark 2.11. As a consequence of the previous lemma we obtain that

‖u‖
L( γ(α+2)

α
,∞) ≤ C‖Λsu‖L(α+2,∞) ,

for 0 < α < γ and s = n(γ−α)
γ(α+2) .

In order to estimate the nonlinear part of our problem we also need the
following lemma.

Lemma 2.12. Let 0 < α < γ and suppose that s defined by s = n(γ−α)
γ(α+2) satisfies

0 < s < 1. Then

‖Λs(|u|αu)‖
L

( α+2
α+1 ,∞) ≤ C‖u‖α

L(α+2,∞)‖Λsu‖L(α+2,∞) (2.10)

and
‖Λs(|u|γu)‖

L
( α+2

α+1 ,∞) ≤ C‖Λsu‖γ+1
L(α+2,∞) . (2.11)

To prove Lemma 2.12 we need two additional results. The first one is the
Leibniz rule for weak Lebesgue spaces.

Lemma 2.13. Suppose that F ∈ C1(C,C), s ∈ (0, 1), and assume that 1 <
p, q, r < ∞ satisfy 1

r = 1
p + 1

q . Then,

‖ΛsF (u)‖L(r,∞) ≤ C‖F ′(u)‖L(p,∞)‖Λsu‖L(q,∞) , (2.12)

as long as the right-hand side is finite.

Proof. Since the ideas are the same as those in [13] we will only outline the
proof making the necessary adaptations to Lorentz spaces.

At first we observe that

∆jF (u)(x) =
∫

Rn

[∫ 1

0
F ′

(
tu(y) + (1 − t)u(x)

)
dt

] (
u(y) − u(x)

)
ψj(x − y)dy,

where ∆j and ψj were defined in (2.2). Using that
∣∣∣∣
∫ 1

0
F ′

(
tu(y) + (1 − t)u(x)

)
dt

∣∣∣∣ ≤ 2M(F ′(u))(x)

and decomposing u =
∑

k ∆̃k∆ku, we obtain

|∆jF (u)(x)| ≤ CM(F ′(u))(x)·
∞∑

k=−∞

∫

Rn

|∆̃k∆ku(y)−∆̃k∆ku(x)||ψj(x−y)|dy,

(2.13)
where M is the Hardy–Littlewood maximal function. Now we break the sum
over k into the cases k < j and k ≥ j. By using the properties of ψj and ∆j ,
we see that

∑

k<j

∫

Rn

|∆̃k∆ku(y)−∆̃k∆ku(x)||ψj(x−y)|dy ≤ C
∑

k<j

2k−jM2∆ku(x), (2.14)

where M2(∆ku(x)) = M ◦ M(∆ku(x)). In a similar fashion,
∑

k≥j

∫

Rn

|∆̃k∆ku(y) − ∆̃k∆ku(x)||ψj(x − y)|dy ≤ C
∑

k≥j

M2∆ku(x). (2.15)
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Inserting (2.14) and (2.15) into (2.13), substituting j = k − m and applying
Minkowski’s inequality, we have




∞∑

j=−∞
22js|∆jF (u)(x)|2




1/2

≤ CMF ′(u)(x)
∞∑

m=−∞
2−ε|m|

( ∞∑

k=−∞
22ks|M2∆ku(x)|2

)1/2

,

where ε = 2min(s, 1 − s) > 0.
In view of Remark 2.8, Holder’s inequality and Lemma 2.9, we then de-

duce

‖ΛsF (u)‖L(r,∞) ≤ C‖MF ′(u)‖L(p,∞)‖
( ∞∑

k=−∞
22ks|M2∆ku|2

)1/2

‖L(q,∞)

= C‖MF ′(u)‖L(p,∞)‖
−→
M2{2ks∆ju}‖L(q,∞)(l2)

≤ C‖MF ′(u)‖L(p,∞)‖{2ks∆ju}‖L(q,∞)(l2).

The conclusion now follows as an application of Remark 2.8. !

Next Lemma is similar to Lemma A.2 in [34].

Lemma 2.14. Suppose that F ∈ C1(C,C) satisfies F (0) = 0 and |F ′(x)| ≤
c|x|k−1, k ≥ 1. If s ∈ [0, 1], then

‖ΛsF (u)‖L(r,∞) ≤ c‖u‖k−1
L(p,∞)‖Λsu‖L(q,∞) (2.16)

where 1 < p, q, r < ∞, 1
r = k−1

p + 1
q and the constant c depends on s, p, q, r.

Proof. Let us start with the case s = 0. Since F ∈ C1(C,C) and F (0) = 0 we
have that ∣∣∣∣

F (u) − F (0)
u − 0

∣∣∣∣ ≤ c|u|k−1.

Now from Holder’s inequality,

‖F (u)‖L(r,∞) ≤ c‖u‖k−1
L(p̃(k−1),∞)‖u‖L(q,∞) where

1
r
=

1
p̃
+

1
q
.

Taking p̃(k− 1) = p we get the result. To solve the case s = 1 we use the same
idea together with the facts that

∂F (u) = F ′(u)∂u and ‖∂u‖L(p,∞) = ‖Λu‖L(p,∞) .

Assume now 0 < s < 1. From Lemma 2.13, we get

‖ΛsF (u)‖L(r,∞) ≤ c‖F ′(u)‖L(p̃,∞)‖Λsu‖L(q,∞) for
1
r
=

1
p̃
+

1
q
.

Using the hypothesis on F and Holder’s inequality, we obtain

‖ΛsF (u)‖L(r,∞) ≤ c‖u‖k−1
L(p̃(k−1),∞)‖Λsu‖L(q,∞) .

By taking p̃(k − 1) = p we get the desired inequality. !
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With Lemma 2.14 in hand we are able to prove Lemma 2.12.

Proof of Lemma 2.12. To prove (2.10) we only need to choose F (x) = |x|αx,
r = α+2

α+1 , p = q = α + 2, k − 1 = α and apply Lemma 2.14. To prove (2.11)
we first note that, as above, an application of Lemma 2.13 gives,

‖Λs(|u|γu)‖
L

( α+2
α+1 ,∞) ≤ C‖u‖γ

L( γ(α+2)
α

,∞)
‖Λsu‖L(α+2,∞) .

An application of Remark 2.11 establishes the desired inequality. !

Remark 2.15. In [34] it was proved (in the Lp level) that (2.16) also holds if
F ∈ Cm(C,C) satisfies |DiF (x)| ≤ |x|k−i, i = 1, . . . ,m for some k ≥ m, and
s ∈ [0,m]. The proof relies on the Gagliardo-Nirenberg type inequality

‖Λsf‖Lp ≤ C‖Λs0f‖1−θ
Lp0 C‖Λs1f‖θ

Lp1 , (2.17)

where θ ∈ (0, 1), s = (1 − θ)s0 + θs1, and 1
p = 1−θ

p0
+ θ

p1
. Here, since we do

not know if (2.17) holds in the L(p,∞) level, we are unable to prove a similar
result. The drawback is that we will not reach all ranges of α and γ as in [47].

Finally, next lemma establishes the boundedness of the linear group U(t)
in the weak Lebesgue spaces.

Lemma 2.16. Let 1 < p < 2. If p′ is such that 1
p + 1

p′ = 1, then there exists a
constant C = C(n, p) > 0 such that

‖U(t)φ‖L(p′,∞) ≤ Ct−
n
d ( 2

p−1)‖φ‖L(p,∞) , (2.18)

for all φ ∈ L(p,∞)(Rn) and t > 0.

Proof. We refer the reader to [7] (see also [43]) for a proof of this lemma. !

3. Main results

In this section we will state and prove our main results. We follow the ideas
in [47] where the author proves existence of global solutions for small initial
data with respect to a norm which is related to the structure of the two-power
nonlinear Shcrödinger equation. Our results extend the ones in [47] since weak-
Lp spaces contain Lebesgue’s spaces. At first let us define the function spaces
where the solutions will be obtained.

Definition 3.1. Given positive numbers s,β, δ and M , let XM = XM (s,β, δ)
be the set of Bochner-measurable functions u : (0,+∞) → Hs

α+2,∞ such that

‖u‖β := sup
t>0

tβ‖u(t)‖L(α+2,∞) ≤ M, (3.1)

and
‖u‖δ,s := sup

t>0
tδ‖Λsu(t)‖L(α+2,∞) ≤ M. (3.2)
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It is not difficult to see that (XM , d) is a nonempty complete metric space
endowed with the distance

d(u, v) := sup
t>0

tβ‖u(t) − v(t)‖L(α+2,∞) .

For ρ > 0, we also define the initial data class Iρ = Iρ(s,β, δ) as follows

Iρ = {u0 ∈ S ′;U(t)u0 ∈ Xρ(s,β, δ)}. (3.3)

Our first result reads as follows.

Theorem 3.2. (Global existence and uniqueness) Assume 0 < max{1,α} < γ.
Define

s =
n(γ − α)
γ(α + 2)

(3.4)

and suppose that 0 < s < 1 and
α + 2
α + 1

<
nα

d
< α + 2. (3.5)

Consider the positive numbers β and δ defined by

β =
1
α

− n

d(α + 2)
and δ =

1
γ
+

s

d
− n

d(α + 2)
. (3.6)

Let ρ > 0 and M > 0 be such that

ρ + |a|C1M
α+1 + |b|C2M

γ+1 ≤ M (3.7)

and
ρ + |a|C3M

α+1 + |b|C4M
γ+1 ≤ M (3.8)

for some positive constants C1, C2, C3, C4 given in the calculations below, and
assume that

|a|C1M
α + |b|C2M

γ < 1. (3.9)

If u0 ∈ Iρ, then there exists a unique global solution of (1.9), say, u ∈
XM (s,β, δ).

Proof. The proof is based on the Banach fixed point theorem. We consider the
integral operator

(Φu)(t) = U(t)u0 + (Bu)(t), (3.10)
where B is defined as in (1.10).

Let XM = XM (s,β, δ) be the function space from Definition 3.1. We will
show that Φ maps XM into itself and Φ : XM → XM is a contraction. To do
that, we assume that u, v ∈ XM and estimate the integrals below:

J1 := tβ |a|
∫ t

0
‖U(t − τ)(|u|αu − |v|αv)(τ)‖L(α+2,∞)dτ,

J2 := tβ |b|
∫ t

0
‖U(t − τ)[E(|u|γ)u − E(|v|γ)v](τ)‖L(α+2,∞)dτ,

J3 := tδ|a|
∫ t

0
‖ΛsU(t − τ)(|u|αu)(τ)‖L(α+2,∞)dτ,
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and

J4 := tδ|b|
∫ t

0
‖ΛsU(t − τ)[E(|u|γ)u](τ)‖L(α+2,∞)dτ.

For m > 0, recall the pointwise inequality

||u|mu − |v|mv| ≤ C(|u|m + |v|m)|u − v|. (3.11)

To estimate J1, we use (3.11) with m = α, Lemma 2.16 and Holder’s inequality
to get

J1 ≤|a|Ctβ
∫ t

0
(t − τ)−

n
d ( 2(α+1)

α+2 −1)‖(|u|αu − |v|αv)(τ)‖
L

( α+2
α+1 ,∞)dτ

≤|a|Ctβ
∫ t

0
(t − τ)−

n
d

α
α+2 (‖u(τ)‖α

L(α+2,∞)

+ ‖v(τ)‖α
L(α+2,∞))‖u(τ) − v(τ)‖L(α+2,∞)dτ

≤C|a|Mαd(u, v)t1− n
d

α
α+2−αβ

∫ 1

0
(1 − s)−

n
d

α
α+2 s−(α+1)βds

≤|a|C1M
αd(u, v),

where in the last inequality we used that β(α + 1) < 1, nα
d(α+2) < 1, and

βα +
nα

d(α + 2)
= 1. (3.12)

Now let us estimate J2. Firstly, we write

E(|u|γ)u − E(|v|γ)v = E(|u|γ)(u − v) + E(|u|γ − |v|γ)v. (3.13)

Let z = α+2
α γ and l = (α+2)γ

(α+1)(γ−1)+1 . Observe that z, l > 1, 1
l = 1

α+2 +
γ−1
z and

1
l +

1
z = α+1

α+2 . Then, using Holder’s inequality, assumption (H3), (3.13), (3.11)
with m = γ − 1 and afterwards Remark 2.11, we obtain

‖E(|u|γ)u − E(|v|γ)v‖
L

( α+2
α+1 ,∞)

≤ ‖E(|u|γ)(u − v)‖
L

( α+2
α+1 ,∞) + ‖E(|u|γ − |v|γ)v‖

L
( α+2

α+1 ,∞)

≤ C ‖E(|u|γ)‖
L( α+2

α
,∞) ‖u − v‖L(α+2,∞) + C ‖E(|u|γ − |v|γ)‖L(l,∞) ‖v‖L(z,∞)

≤ C ‖|u|γ‖
L( α+2

α
,∞) ‖u − v‖L(α+2,∞) + C ‖(|u|γ − |v|γ)‖L(l,∞) ‖Λsv‖L(α+2,∞)

≤ C ‖|u|γ‖
L( α+2

α
,∞) ‖u − v‖L(α+2,∞)

+ C
∥∥|u|γ−1 + |v|γ−1

∥∥
L

( z
γ−1 ,∞) ‖u − v‖L(α+2,∞) ‖Λsv‖L(α+2,∞)

≤ C ‖u‖γ
L(z,∞) ‖u − v‖L(α+2,∞)

+ C(‖u‖γ−1
L(z,∞) + ‖v‖γ−1

L(z,∞)) ‖u − v‖L(α+2,∞) ‖Λsv‖L(α+2,∞)

≤ C ‖Λsu‖γ
L(α+2,∞) ‖u − v‖L(α+2,∞)

+ C(‖Λsu‖γ−1
L(α+2,∞) + ‖Λsv‖γ−1

L(α+2,∞)) ‖u − v‖L(α+2,∞) ‖Λsv‖L(α+2,∞)

≤ C(‖Λsu‖γ
L(α+2,∞) + ‖Λsv‖γ

L(α+2,∞))‖u − v‖L(α+2,∞) . (3.14)
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From the last inequality and Lemma 2.16, we obtain that

J2 ≤ |b|Ctβ
∫ t

0
(t − τ)−

n
d

α
α+2 (‖E(|u|γ)u − E(|v|γ)v‖

L
( α+2

α+1 ,∞))dτ

≤ |b|Ctβ
∫ t

0
(t − τ)−

n
d

α
α+2 (‖Λsu(τ)‖γ

L(α+2,∞)

+ ‖Λsv(τ)‖γ
L(α+2,∞))‖u(τ) − v(τ)‖L(α+2,∞)dτ

≤ |b|CMγd(u, v)t1− n
d

α
α+2−γδ

∫ 1

0
(1 − s)−

n
d

α
α+2 s−(β+γδ)ds

≤ |b|C2M
γd(u, v),

where in the last inequality we used that γδ + β < 1, nα
d(α+2) < 1, and

n

d

α

α + 2
+ γδ = 1. (3.15)

For J3, we use Lemmas 2.16 and 2.12 to obtain

J3 ≤|a|Ctδ
∫ t

0
(t − τ)−

n
d

α
α+2 ‖Λs(|u(τ)|αu(τ))‖

L
( α+2

α+1 ,∞)dτ

≤|a|Ctδ
∫ t

0
(t − τ)−

n
d

α
α+2 ‖u(τ)‖α

L(α+2,∞)‖Λsu(τ))‖L(α+2,∞)dτ

In comparison with J3, the handling of J4 requires some care due to the
presence of the nonlocal operator E and the fractional derivative Λs. For that,
we recall the parameters z = α+2

α γ and l = (α+2)γ
(α+1)(γ−1)+1 and apply Leibniz’s

rule in the setting of weak-Lp (see [15, Theorem 6.1]) to estimate

‖Λs(E(|u|γ)u‖
L

( α+2
α+1 ,∞) ≤ ‖Λs(E(|u|γ)‖L(l,∞)‖u‖L(z,∞)

+‖E(|u|γ)‖
L( α+2

α
,∞)‖Λsu‖L(α+2,∞) (3.16)

Next, let l1 = z
γ−1 and note that 1

l = 1
l1
+ 1

α+2 . Using (H3), Lemma 2.13 and
then Remark 2.11 in the R.H.S. of (3.16), we obtain that

‖Λs(E(|u|γ)u‖
L

( α+2
α+1 ,∞) ≤ C‖Λs(|u|γ)‖L(l,∞)‖u‖L(z,∞)

+ C‖|u|γ‖
L( α+2

α
,∞)‖Λsu‖L(α+2,∞)

≤ C‖|u|γ−1‖L(l1,∞)‖Λsu‖L(α+2,∞)‖u‖L(z,∞)

+ C‖u‖γ
L(z,∞)‖Λsu‖L(α+2,∞)

≤ C‖u‖γ−1
L(z,∞)‖Λsu‖L(α+2,∞)‖u‖L(z,∞)

+ C‖u‖γ
L(z,∞)‖Λsu‖L(α+2,∞)

≤ C‖Λsu‖γ+1
L(α+2,∞) (3.17)
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Finally, Lemma 2.16 and estimate (3.17) yield

J4 ≤|b|Ctδ
∫ t

0
(t − τ)−

n
d

α
α+2 ‖Λs(E(|u(τ)|γ)u(τ))‖

L
( α+2

α+1 ,∞)dτ

≤|b|Ctδ
∫ t

0
(t − τ)−

n
d

α
α+2 ‖Λsu(τ))‖γ+1

L(α+2,∞)dτ.

Following the same ideas as before, using (3.12), (3.15), and the facts
that βα + δ < 1, δ(γ + 1) < 1, we have

J3 + J4 ≤ |a|C3M
α+1 + |b|C4M

γ+1.

With the above estimates in hand we are able to prove existence of global
solutions to (1.9). Indeed, suppose that u0 ∈ Iρ. The four estimates above
combined with assumptions (3.7) and (3.8) promptly allow us to show that Φ
acts from XM to XM . In addition, the estimates for J1 and J2 together with
(3.9) implies the existence of a positive constant K0 < 1 such that

d(Φu,Φv) ≤ K0d(u, v),

for any u, v ∈ XM . The Banach fixed point theorem then gives us the desired
result. !

Remark 3.3. Our results also holds true for NLS-like equations with nonlin-
earity having two powers and double nonlocal operators E1 and E2 satisfying
(H3). More precisely, in (1.1) we can consider the nonlinearity aE1(|u|α)u +
bE2(|u|γ)u. To do so, it is sufficient to estimate the terms J1 and J3 with the
new term E1 (see page 12) by following the arguments used to handle J2 and
J4.

Remark 3.4. Here we give a sufficient condition to initial data satisfying the
assumptions in Theorem 3.2. Let ϕ ∈ Ḣσ

q,∞ ∩ Ḣτ
r,∞, where

σ=−βd

2
+

nα

2(α + 2)
,

1
q
=

βd

2n
+

1
2
, τ = s − δd

2
+

nα

2(α + 2)
,

1
r
=

δd

2n
+

1
2
,

with β, δ,α, γ, s satisfying the assumptions in Theorem 3.2. Noting that

σ = n

(
1
q′ − 1

α + 2

)
and τ − s = n

(
1
r′ − 1

α + 2

)
,

and using Lemmas 2.10 and 2.16, we estimate

‖U(t)ϕ‖L(α+2,∞) = ‖Λ−σU(t)Λσϕ‖L(α+2,∞)

≤ C‖U(t)Λσϕ‖L(q′,∞)

≤ C|t|−β‖Λσϕ‖L(q,∞) .

Analogously,

‖ΛsU(t)ϕ‖L(α+2,∞) = ‖Λs−τU(t)Λτϕ‖L(α+2,∞)

≤ C‖U(t)Λτϕ‖L(r′,∞)

≤ C|t|−δ‖Λτϕ‖L(r,∞) .
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It follows that U(t)ϕ ∈ Xρ for some ρ > 0. In particular, the assumptions
in Theorem 3.2 hold provided that u0 ∈ Ḣσ

q,∞ ∩ Ḣτ
r,∞ and ρ and M are small

enough.

Remark 3.5. (Well-posedness) Under the assumptions of Theorem 3.2, if u0

and v0 are two tempered distributions in Xρ and if u and v are the corre-
sponding solutions then we easily see that there exists a constant C > 0 such
that

d(u, v) ≤ Cd(U(t)u0, U(t)v0),

which shows the continuous dependence of solutions with respect to initial
data. Thus, we have in fact obtained a well-posedness result in the sense of
Hadamard in our setting.

Remark 3.6. A few words of explanation concerning our assumptions in The-
orem 3.2 are in order. For r > 0, let {r} denotes the smallest integer bigger
than or equal to r. Instead of assuming 0 < s < 1, in [47] it was assumed

{s} < α + 1. (3.18)

In particular, when s < 1, (3.18) is equivalent to α > 0, which brings no
additional assumption on α. Hence our assumption is more restrictive than
the one in [47]. On the other hand, the assumption s < 1 is equivalent to

α >
(n − 2)γ
γ + n

. (3.19)

It is clear that if n = 1 or n = 2, (3.19) is always true. So, our assumption
makes sense only in dimension n ≥ 3 in which case we are indeed assuming
that the relation between α and γ satisfies

(n − 2)γ
γ + n

< α < γ.

In the sequel we will study some properties of the global solution obtained
in Theorem 3.2. The first one concerns scattering in weak Lebesgue spaces.

Theorem 3.7. (Scattering) Suppose that the assumptions in Theorem 3.2 hold
and let u be the corresponding global solution with initial data u0. Then, there
exists u+ ∈ Iρ̃, for some ρ̃ > 0, such that

‖u(t) − U(t)u+‖L(α+2,∞) ≤ Ct−β
(
‖u‖α+1

β + ‖u‖γ
δ,s‖u‖β

)
, t > 0. (3.20)

and

‖Λs (u(t) − U(t)u+) ‖L(α+2,∞) ≤ Ct−δ
(
‖u‖α

β‖u‖δ,s+‖u‖γ+1
δ,s

)
, t > 0. (3.21)

In particular

lim
t→∞

(
‖u(t) − U(t)u+‖L(α+2,∞) + ‖Λs (u(t) − U(t)u+) ‖L(α+2,∞)

)
= 0.
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Proof. To simplify notation let us write F (s) = a(|u|αu)(s) + b(E(|u|γ)u)(s).
From (1.9), we have, for t > 1,

U(−t)u(t) = u0 + i

∫ 1

0
U(−s)F (s)ds+ i

∫ t

1
U(−s)F (s)ds. (3.22)

Let us show that the last integral on the right-hand side of (3.22) is convergent
as t → ∞. In fact, as in the proof of Theorem 3.2,
∫ t

1
‖U(−s)F (s)‖L(α+2,∞)ds ≤ C‖u‖α+1

β

∫ t

1
s−n

d
α

α+2 s−β(α+1)ds

+ C‖u‖γ
δ,s‖u‖β

∫ t

1
s−n

d
α

α+2 s−(γδ+β)ds

≤ CMα+1

∫ t

1
s−(1+β)ds+ CMγ+1

∫ t

1
s−(1+β)ds

≤ C(M)(1 − t−β),

where in the second inequality we have used (3.12) and (3.15). This implies
that the distribution

u+ := u0 + i

∫ ∞

0
U(−s)F (s)ds

is well-defined. Note that

U(t)u+ = U(t)u0 + i

∫ ∞

0
U(t − s)F (s)ds.

We are going to show that u+ ∈ Iρ̃, for some ρ̃ > 0. First we claim that
‖u+‖β < ∞. For that, it is sufficient to show that

∫ ∞

0
‖U(t − s)F (s)‖L(α+2,∞) ≤ Ct−β , for all t > 0. (3.23)

To establish (3.23) we split
∫ ∞

0
U(t − s)F (s)ds =

∫ t

0
U(t − s)F (s)ds+

∫ ∞

t
U(t − s)F (s)ds. (3.24)

The first integral on the right-hand side of (3.24) can be estimated as in the
proof of Theorem 3.2. So that,

∫ t

0
‖U(t − s)F (s)‖L(α+2,∞)ds ≤ Ct−β

(
‖u‖α+1

β + ‖u‖γ
δ,s‖u‖β

)

≤ C(Mα+1 +Mγ+1)t−β . (3.25)

For the second integral, by using (3.12) and (3.15), we deduce
∫ ∞

t
‖U(t − s)F (s)‖L(α+2,∞)ds ≤ Ct−βMα+1

∫ ∞

1
(s − 1)−

n
d

α
α+2 s−(αβ+β)ds

+Ct−βMγ+1

∫ ∞

1
(s − 1)−

n
d

α
α+2 s−(γδ+β)ds

= Ct−βI1 + Ct−βI2, (3.26)
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where the integrals I1 and I2 are finite. Using (3.25) and (3.26), we obtain
(3.23). From our calculations above, it is also clear that (3.20) holds.

By following the arguments above and using the estimates for J3 and J4,
it is not difficult to see that ‖u+‖δ,s < ∞ and that (3.21) also holds. The proof
of the theorem is thus completed. !

In next result, we investigate suitable conditions on the initial data so
that solutions present decay faster than those in Theorem 3.2.

Theorem 3.8. Under the hypotheses of Theorem 3.2.
(i) Assume that u0 satisfies ‖U(t)u0‖µ < ∞ for some µ ≥ 0 with αβ+µ < 1.

Assume also that there exist positive constants C5 and C6 such that

|a|C5M
α + |b|C6M

γ < 1, (3.27)

where C5 and C6 are constants explicitly obtained in the calculations be-
low. Then, the solution u given by Theorem 3.2 verifies the decay property
‖u‖µ < ∞.

(ii) Assume that u0 satisfies ‖U(t)u0‖ν,s < ∞ for some ν ≥ 0 with αβ+ν < 1.
Assume also that there exist positive constants C7 and C8 such that

|a|C7M
α + |b|C8M

γ < 1,

where C7 and C8 are constant explicitly obtained in the calculations below.
Then, the solution u given by Theorem 3.2 satisfies the property ‖u‖ν,s <
∞.

Proof. Working as in the estimates for J1 and J2 above, we can estimate

J5 := |a|tµ
∫ t

0
‖U(t − τ)(|u|α)(τ)‖L(α+2,∞)dτ

≤ |a|CMαtµ
∫ t

0
(t − τ)−

n
d ( α

α+2 )τ−βα−µdτ sup
t>0

tµ‖u(t)‖L(α+2,∞)

≤ |a|C5M
α‖u‖µ,

where in the last inequality we used (3.12) and the facts that nα
d(α+2) < 1 and

βα + µ < 1.
Now using the same ideas,

J6 := |b|tµ
∫ t

0
‖U(t − τ)[E(|u|γ)u(τ)]‖L(α+2,∞)dτ

≤ |b|CMγtµ
∫ t

0
(t − τ)−

n
d ( α

α+2 )τ−δγ−µdτ sup
t>0

tµ‖u(t)‖L(α+2,∞)

≤ |b|C6M
γ‖u‖µ,

where in the last inequality we used that nα
d(α+2) < 1, δγ + µ < 1 and (3.15).

Note that αβ = γδ, so the assumption αβ + µ < 1 also gives γδ + µ < 1.
We will reapply the contraction-mapping argument in order to get the de-

sired property. Since ‖U(t)ϕ‖µ < ∞, there exists σ > 0 such that ‖U(t)ϕ‖µ ≤
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σ. From hypothesis (3.27) we have that 1− (|a|C5Mα + |b|C6Mγ) > 0. Hence,
by choosing K > 0 such that

K ≥ σ

1 − (|a|C5Mα + |b|C6Mγ)
,

we deduce that

σ + |a|C5M
αK + |b|C6M

γK ≤ K.

Now consider the following subspace YM,K ⊂ XM :

YM,K = {w ∈ XM ; ‖w‖µ ≤ K}.

Observe that (YM,K , d) is a nonempty complete metric space, with d as in
Definition 3.1.

Let Φ be the integral operator defined in (3.10). Let us show that Φ
maps YM,K into itself and Φ : YM,K → YM,K is a contraction. Suppose that
u ∈ YM,K . Estimates for J5 and J6 yield

‖Φ(u)‖µ ≤ σ + |a|C5M
αK + |b|C6M

γK ≤ K,

proving that Φ(YM,K) ⊂ YM,K . Since the distance in YM,K is that in XM and
we already proved that Φ is a contraction on XM (see proof of Theorem 3.2)
we have that Φ is also a contraction on YM,K . This implies that the solution
u in XM is also in YM,K , which means that ‖u‖µ < ∞.

Now we turn to item (ii). Suppose that ‖U(t)ϕ‖ν,s ≤ σ and choose K > 0
such that

σ + |a|C7M
αK + |b|C8M

γK ≤ K.

By defining ZM,K ⊂ XM as

ZM,K = {w ∈ XM ; ‖w‖ν,s ≤ K},

we see that (ZM,K , d) is a nonempty complete metric space with the metric
d as in Definition 3.1. Let us show that Φ maps ZM,K into itself and Φ :
ZM,K → ZM,K is a contraction. By assuming u ∈ ZM,K and slightly adapting
the estimate for J3 in Theorem 3.2, we easily arrive at

J7 := |a|tν
∫ t

0
‖ΛsU(t − τ)(|u(τ)|αu(τ))‖L(α+2,∞)dτ

≤ |a|Ctν
∫ t

0
(t − τ)−

n
d ( α

α+2 )‖u(τ)‖α
L(α+2,∞)‖Λsu(τ))‖L(α+2,∞)dτ

≤ |a|CtνMαK

∫ t

0
(t − τ)−

n
d ( α

α+2 )τ−βα−νdτ ≤ |a|C7M
αK,

where we used (3.12), nα
d(α+2) < 1, and βα + ν < 1.
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Now we proceed as in the estimate for J4 to get

J8 := |b|tν
∫ t

0
‖ΛsU(t − τ)[E(|u(τ)|γ)u(τ)]‖L(α+2,∞)dτ

≤ |b|Ctν
∫ t

0
(t − τ)−

n
d ( α

α+2 )‖Λsu(τ))‖γ+1
L(α+2,∞)dτ

≤ |b|CtνMαK

∫ t

0
(t − τ)−

n
d ( α

α+2 )τ−δγ−νdτ ≤ |b|C8M
γK,

where we used (3.15), nα
d(α+2) < 1, and δγ + ν < 1.

Using the estimates for J7 and J8, it follows that

‖Φ(u)‖ν,s ≤ σ + |a|C7M
αK + |b|C8M

γK ≤ K,

proving that Φ(ZM,K) ⊂ ZM,K . The conclusion then follows as in the first
part and we are done. !

From another point of view, the solution u in Theorem 3.2 and Theorem
3.8 (i) satisfies ‖u(·, t)‖L(α+2,∞) = O(t−µ) provided that ‖U(t)u0‖L(α+2,∞) =
O(t−µ) as t → ∞, for µ = β and µ(α + 1) < 1, respectively. In the sequel we
provide a criterion for solutions to be asymptotically stable, which, in partic-
ular, assures that we can replace O(t−µ) by o(t−µ) in the last two equalities.

Theorem 3.9. (Asymptotic stability) Assume the hypotheses of Theorem 3.2
and that u0, v0 ∈ Iρ. For some µ ≥ β with αβ+µ < 1, suppose that ‖U(t)u0‖µ
< ∞, ‖U(t)v0‖µ < ∞ and

lim
t→∞

tµ‖U(t)(u0 − v0)‖L(α+2,∞) = 0.

For µ > β, assume that |a|C5Mα+|b|C6Mγ < 1. For µ = β, we have condition
(3.9). Let u and v be the solutions of (1.9) with initial values u0 and v0,
respectively, given by Theorem 3.2. Then

lim
t→∞

tµ‖u(t) − v(t)‖L(α+2,∞) = 0.

Proof. For µ ≥ β, we can estimate

tµ‖u(t) − v(t)‖L(α+2,∞) ≤ tµ‖U(t)(u0 − v0)‖L(α+2,∞)

+ |a|CMαtµ
∫ t

0
(t − τ)−

n
d ( α

α+2 )τ−βα−µτµ‖u(τ)

− v(τ)‖L(α+2,∞)dτ

+ |b|CMγtµ
∫ t

0
(t − τ)−

n
d ( α

α+2 )τ−δγ−µτµ‖u(τ)

− v(τ)‖L(α+2,∞)dτ
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Making the change of variables τ = tz, we arrive at

tµ‖u(t) − v(t)‖L(α+2,∞) ≤ tµ‖U(t)(u0 − v0)‖L(α+2,∞)

+ |a|CMα

∫ 1

0
(1 − z)−

n
d ( α

α+2 )z−βα−µ(tz)µ‖u(tz)

− v(tz)‖L(α+2,∞)dz

+ |b|CMγ

∫ 1

0
(1 − z)−

n
d ( α

α+2 )z−δγ−µ(tz)µ‖u(tz)

− v(tz)‖L(α+2,∞)dz (3.28)

Denote

A = lim sup
t→∞

tµ‖u(t) − v(t)‖L(α+2,∞) .

For µ > β and µ = β, we have that A < ∞ due to Theorems 3.8 and 3.2,
respectively. Computing limsup in both sides of (3.28) and using Dominated
Convergence Theorem, we obtain

A ≤ 0 + |a|CMα

∫ 1

0
(1 − z)−

n
d ( α

α+2 )z−βα−µdz A

+ |b|CMγ

∫ 1

0
(1 − z)−

n
d ( α

α+2 )z−δγ−µdzA

= RA, (3.29)

where R = |a|C1Mα+|b|C2Mγ < 1 for µ = β and R = |a|C5Mα+|b|C6Mγ < 1
for µ > β. Thus, it follows that A = 0, which gives the desired conclusion. !

Equation (1.1) has no scaling u(x, t) '→ λmu(λx,λ2t), for any m ∈ R.
This fact prevents the existence of self-similar solutions to (1.1). Alternatively,
we will prove that (1.1) admits a class of asymptotically self-similar solutions
with respect to the scaling of (1.2). Resembling results in the Lp-setting can
be found in [47].

For that matter, first note that Theorem 3.2 with b = 0 gives global mild
solutions in weak-Lp spaces for (1.2) (see also [7,43]), i.e., solutions v of the
integral equation

v(t) = U(t)v0 + i

∫ t

0
U(t − s)(a|v|αv)(s)ds, (3.30)

satisfying ‖v‖β ≤ M . Moreover, with a slight modification in the proof, we
only need to assume ‖U(t)v0‖β ≤ ρ instead of v0 ∈ Iρ.

In the next theorem, we compare the mild solutions of (1.1) and (1.2).
In fact, we are going to prove that solutions of (1.2) attract those of (1.1)
as t → ∞, depending on a suitable condition for the difference of the initial
values ψ = u0 − v0.

Theorem 3.10. Under the hypotheses of Theorem 3.2. Let u be the correspond-
ing solution of (1.9) with initial value u0 ∈ Iρ given by Theorem 3.2. Let v be
the solution of (3.30) (i.e., (1.9) with b = 0) with initial value v0, such that
‖U(t)v0‖β ≤ ρ, also given by Theorem 3.2. Suppose further that u0 satisfies the
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hypotheses of part (ii) of Theorem 3.8 with some ν > δ such that γν + β < 1.
Then, we have that

lim
t→∞

tβ‖u(t) − v(t)‖L(α+2,∞) = 0, (3.31)

provided that

lim
t→∞

tβ‖U(t)(u0 − v0)‖L(α+2,∞) = 0. (3.32)

Proof. First note that

tβ‖u(t) − v(t)‖L(α+2,∞) ≤ tβ‖U(t)(u0 − v0)‖L(α+2,∞)

+ |a|tβ‖
∫ t

0
U(t − τ)(|u|αu

− |v|αv)(τ)dτ‖L(α+2,∞)‖L(α+2,∞)

+ |b|tβ‖
∫ t

0
U(t − τ)[E(|u|γ)u](τ)dτ‖L(α+2,∞)

Proceeding as in the estimates for J1 and J2 above, we obtain

tβ‖u(t) − v(t)‖L(α+2,∞)

≤ tβ‖U(t)(u0 − v0)‖L(α+2,∞)

+ |a|CMαtβ
∫ t

0
(t − τ)−

n
d ( α

α+2 )τ−βα−βτβ‖u(τ) − v(τ)‖L(α+2,∞)dτ

+ |b|CMγtβ
∫ t

0
(t − τ)−

n
d ( α

α+2 )‖Λsu(τ))‖γ
L(α+2,∞)‖u(τ)‖L(α+2,∞)dτ

:= A1(t) +A2(t) +A3(t). (3.33)

From Theorem 3.8 part (ii), we have that ‖u‖ν,s = supτ>0 τν‖Λsu(τ)‖L(α+2,∞)

< ∞ and then

A3(t) ≤ C|b|tβ
∫ t

0
(t − τ)−

n
d ( α

α+2 )τ−γν−βdτ‖u‖γ
ν,s‖u‖β

= t−
n
d ( α

α+2 )+1−γδ−γ(ν−δ)C|b|
∫ 1

0
(1 − z)−

n
d ( α

α+2 )τ−γν−βdτ‖u‖γ
ν,s‖u‖β

= Ct−γ(ν−δ)‖u‖γ
ν,s‖u‖β → 0, as t → ∞. (3.34)

Taking H = lim supt→∞ tβ‖u(t) − v(t)‖L(α+2,∞) , working in the same spirit of
the proof of Theorem 3.9 and using (3.33)–(3.34), we obtain

H ≤ 0 + |a|C1M
αH+ 0,

which gives (3.31), because 0 ≤ H < ∞ and |a|C1Mα < 1. !

We finish by showing the existence of mild solutions of (1.1) that are
asymptotically self-similar at infinite, with respect to the scaling of the single-
power Schrödinger equation (1.2).
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Corollary 3.11. (Asymptotic self-similarity) In addition to the hypotheses of
Theorem 3.10, assume that v0 is a homogeneous distribution of degree −d/α

and that u0 = v0 +ω with ω satisfying (3.32), e.g., ω ∈ L(α+2
α+1 ,∞). Let v be the

self-similar solution of (3.30) corresponding to the initial value v0. Then, the
solution u of (1.9) with initial value u0 satisfies

lim
t→∞

tβ ‖u(t) − v(t)‖L(α+2,∞) = 0. (3.35)

In other words, one obtains a class of solutions of (1.9) that are attracted in
the sense of (3.35) to the self-similar solution v of (3.30).

Proof. For ω ∈ L(α+2
α+1 ,∞), using Lemma 2.16 and noting that β < nα

d(α+2) , we
have that

0 ≤ tβ ‖U(t)ω‖L(α+2,∞) ≤ Ctβ− nα
d(α+2) ‖ω‖

L
( α+2

α+1 ,∞) → 0, as t → ∞, (3.36)

and then ω = u0 − v0 satisfies (3.32). If this condition is verified, then (3.35)
follows from Theorem 3.10. Furthermore, notice that v is self-similar because
v0 is homogeneous of degree −d/α (see, for instance, [7,9,43]). The proof of
the corollary is thus completed. !
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