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Abstract. We study the Cauchy problem associated with nonlinear
Schrödinger-type equations with a nonlocal term in Rn. Existence and
uniqueness of local and global solutions are established in spaces which
allow singular initial data. Scattering, asymptotic stability, and decay
rates are also proved.

1. Introduction

This paper is concerned with the initial-value problem (IVP) associated
with Schrödinger-type equations of the form{

i∂tu+ Lu = χ|u|ρu+ bE(|u|ρ)u,
u(x, 0) = u0(x),

(x, t) ∈ Rn × R, n ≥ 1, (1.1)

where u = u(x, t) is a complex-valued function, χ and b are real constants,
L and E are linear operators, and ρ is a positive real number.

Our main goal is to give sufficient conditions on the operators L and
E that allow us to establish the local and global well-posedness of the IVP
(1.1) for a “sufficiently large” class of initial data that includes homogeneous
functions. Self-similar solutions will be obtained as a consequence.

The usual example where (1.1) appears is in the case b = 0 and L = ∆,
where ∆ stands for the Laplacian operator. In such a situation, (1.1) reduces
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to the well-known nonlinear Schrödinger equation

i∂tu+ ∆u = χ|u|ρu, (1.2)

which has a central role in the theory of nonlinear dispersive equations and
emerges in many fields in applied physics (see for example [19], [31], [41], and
[44]). Another example that reduces to (1.1) is the n-dimensional (n ≥ 2)
Davey–Stewartson (DS) system

i∂tu+ δ∂2x1u+
∑n

j=2 ∂
2
xju = χ|u|ρu+ bu∂x1ϕ,

∂2x1ϕ+m∂2x2ϕ+
∑n

j=3 ∂
2
xjϕ = ∂x1(|u|ρ),

u(x, 0) = u0(x),

(1.3)

where u = u(x, t) is a complex-valued function and ϕ = ϕ(x, t) is a real-
valued function. The parameters χ, b, and δ are real constants and m is a
positive number. The Davey–Stewartson system was derived in [14] in the
context of water waves. Since then, many works concerning various different
topics including solvability of the initial- and initial-boundary-value prob-
lems, blow-up solutions, existence of periodic solutions, stability of standing
waves, etc., are available in the current literature (we refer the reader to [13],
[17], [20], [21], [22], [23], [24], [25], [33], [35], [36], [29], and references therein).
As is well-known, considering n = 2 and ρ = 2, the Davey–Stewartson sys-
tem generalizes the one-dimensional cubic Schrödinger equation

i∂tu+ ∂2xu = χ|u|2u

in water-waves modelling.
On one hand, under suitable conditions on L and E, the Cauchy problem

(1.1) has attracted the attention of many researchers in the framework of
the Sobolev spaces Hs(Rn), which are the appropriate spaces to study (1.1)
(see for instance [9], [10], [11], [26], [27], and references therein), and it has
been shown to be well-understood by now. On the other hand, it seems
to be quite natural and interesting to look for solutions of (1.1) which are
invariant by scaling. Since in this situation the initial data is required to
be a homogeneous function, the local and global theories in the Sobolev
spaces fail in providing such solutions. As a consequence, it is necessary to
use suitable functional spaces which allow homogeneous Cauchy data. This
approach was initiated in [7] and [12] for the Schrödinger equation.

Although our results are inspired on the Davey–Stewartson system, our
analysis goes beyond. Indeed, throughout the paper, we assume that L is a
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pseudo-differential operator defined via its Fourier transform by

L̂u(ξ) = q(ξ)û(ξ), (1.4)

where we have the following:
(H1) The function q is real and homogeneous of degree d; that is,

q(λξ) = λdq(ξ), λ > 0.

(H2) The function G(x) =
∫
Rn e

i(xξ+q(ξ)) dξ belongs to L∞(Rn).
The assumption on the operator E is that

(H3) E is bounded from L(p,∞)(Rn) to itself, for all p satisfying 1 < p <∞.

Here and throughout the paper, L(p,∞)(Rn) stands for the weak Lebesgue
space (see [4] or Section 2 for a brief review). In most examples, the operator
E is shown to be bounded from Lp(Rn) to Lp(Rn). Hence, by using the real
interpolation method, one obtains the assumption (H3) (see Section 4).

To study the IVP (1.1) we use its equivalent integral formulation

u(t) = U(t)u0 + i

∫ t

0
U(t− s)(χ|u|ρu+ buE(|u|ρ))(s) ds, (1.5)

where U(t)u0 is the solution of the linear problem{
i∂tu+ Lu = 0,

u(x, 0) = u0(x),
(x, t) ∈ Rn × R; (1.6)

that is,

U(t)u0(x) =

∫
Rn
ei(xξ+tq(ξ))û0(ξ) dξ. (1.7)

Remark 1.1. From Stone’s theorem, the operator U(t) defines a unitary
group on Hs(Rn), for all s ∈ R. In particular,

‖U(t)u0‖L2 = ‖u0‖L2 . (1.8)

The plan of the paper is the following. In Section 2, we introduce some
notation and give two preliminary lemmas. The first one is concerned with
the boundedness of the unitary group U(t) in L(p,∞)(Rn). This result is
crucial in our analysis below. The second lemma regards the boundedness
of the integral part of (1.5) in our functional spaces, which is necessary to
apply the Banach fixed-point theorem. In Section 3, we prove our main
results. In particular, we establish local and global existence, asymptotic
stability, decay, and existence of self-similar solutions. Finally, in Section 4,
we give applications of our results to some physical models. In particular,
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we consider the Schrödinger equation, the Davey–Stewartson system, the
Grimshaw system, and the Shrira system.

2. Notation and preliminaries

Let us begin this section by introducing the notation used throughout the
paper. We use C to denote various constants that may vary line by line.
We denote by ‖ · ‖Lp , 1 ≤ p ≤ ∞, the usual Lebesgue Lp-norm. The Fourier
transform of a function f = f(x) is defined by

(Ff)(ξ) = f̂(ξ) =

∫
Rn
e−ix·ξf(x) dx.

The inverse Fourier transform of a function g = g(ξ) is denoted by (F−1g)(x)
= ǧ(x). In S ′(Rn) (the space of tempered distributions) the Fourier trans-
form is understood in the usual sense. S(Rn) will denote the class of all
Schwartz functions.

The weak Lebesgue spaces L(p,∞) = L(p,∞)(Rn), 1 ≤ p < ∞, are defined
as

L(p,∞) = {f : Rn → C measurable : ‖f‖L(p,∞) := sup
λ>0

λα(λ, f)1/p <∞},

where

α(λ, f) = µ({x ∈ Rn : |f(x)| > λ}), and µ is the Lebesgue measure.

As is well-known, there exists an equivalent norm in L(p,∞), 1 < p < ∞,
such that L(p,∞) becomes a Banach space. Moreover,

Lp ↪→ L(p,∞)

with continuous embedding.
We observe that if 1 < p, q, r <∞, then the Hölder inequality

‖fg‖L(r,∞) ≤ ‖f‖L(p,∞)‖g‖L(q,∞) , 1
p + 1

q = 1
r ,

holds (see [32]). Also, if 1 ≤ r < ∞ and 1 < q, p < ∞, then the Young
inequality

‖f ∗ g‖L(q,∞) ≤ C‖g‖Lr‖f‖L(p,∞) , 1
q = 1

p + 1
r − 1, (2.1)

is valid (see [16, page 21]).
Next we prove a Bernstein-type inequality.
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Proposition 2.1 (Bernstein’s inequality). Let f ∈ S ′(Rn) be such that

supp f̂ ⊂ B(0, R), where B(0, R) denotes the ball in Rn with radius R cen-
tered at the origin. If 1 < p ≤ q <∞, then there exists C > 0 such that

‖f‖L(q,∞) ≤ CRn
(

1
p
− 1
q

)
‖f‖L(p,∞) .

Proof. The proof is similar to that for Lebesgue spaces. For the sake of
completeness, we bring it here. We claim that it suffices to assume R = 1.

Indeed, suppose we have proved the proposition for R = 1; then if supp f̂ ⊂
B(0, R), define g(x) = f(R−1x). We have ĝ(ξ) = Rnf̂(Rξ) and supp ĝ ⊂
B(0, 1). Since

‖g‖L(r,∞) = ‖f(R−1·)‖L(r,∞) = R
n
r ‖f‖L(r,∞) , 1 < r <∞,

the conclusion then follows just by applying the result for g.

Assume then that supp f̂ ⊂ B(0, 1). Take ϕ ∈ S(Rn) satisfying ϕ̂ ≡ 1 on

B(0, 1) and ϕ̂ ≡ 0 on Rn \ B(0, 2). Since f̂ = ϕ̂f̂ , we have f = ϕ ∗ f . In
view of the Young inequality (2.1), we deduce

‖f‖L(q,∞) ≤ C‖ϕ‖Lr‖f‖L(p,∞) , 1
q = 1

p + 1
r − 1.

Because ϕ ∈ S(Rn) we obtain ϕ ∈ Lr, 1 < r < ∞, and thus the result
follows. �

Let ϕ̂ ∈ C∞0 (Rn) be a function satisfying 0 ≤ ϕ̂ ≤ 1, ϕ̂ = 1 if |ξ| ≤ 1, and
ϕ̂ = 0 if |ξ| > 2. Define

ψ̂(ξ) = ϕ̂(ξ)− ϕ̂(2ξ), ψ̂j(ξ) = ψ̂(2−jξ), j ∈ Z,

so that∑
j∈Z

ψ̂j(ξ) = 1, ξ 6= 0, and supp(ψ̂j) ⊂ {2j−1 ≤ |ξ| ≤ 2j+1}.

Next, we define the Littlewood–Paley multiplier ∆j as

∆jf = (ψ̂j f̂)∨ = ψj ∗ f, j ∈ Z. (2.2)

Also, let η̂ be another smooth function supported in {1/4 < |ξ| < 4} such

that η̂ = 1 on supp(ψ̂). We define ∆̃j like ∆j with η instead of ψ. Thus, the
identity

∆̃j∆j = ∆j (2.3)

holds.
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We define the weak homogeneous Besov space to be

Ḃs,q
p,∞ =

{
f ∈ S ′(Rn) : ‖f‖Ḃs,qp,∞ =

(∑
j∈Z

22js‖∆jf‖qL(p,∞)

)1/q
<∞

}
,

where s ∈ R, and 1 ≤ p, q <∞. In particular,

‖f‖
Ḃ0,1
p,∞

=
∑
j∈Z
‖∆jf‖L(p,∞) .

It is not difficult to see that Ḃ0,1
p,∞ is continuously imbedded in L(p,∞) (see,

e.g., [4, Theorem 6.3.1]); that is, there exists C > 0 such that

‖f‖L(p,∞) ≤ C‖f‖Ḃ0,1
p,∞

, f ∈ Ḃ0,1
p,∞. (2.4)

From now on, we denote

α :=
d

ρ
− n

ρ+ 2
and β :=

d

ρ
− n(ρ+ 1)

ρ+ 2
. (2.5)

Definition 2.2. Let 0 < ρ < ∞ and 0 < T < ∞. We denote by Eα and
ETα,β the Banach spaces

Eα = {u : |t|α/du ∈ L∞(R;L(ρ+2,∞))}, (2.6)

ETα,β = {u : |t|(α−β)/du ∈ L∞((−T, T );L(ρ+2,∞))}, (2.7)

with respective norms

‖u‖α = sup
−∞<t<+∞

|t|α/d‖u(t)‖L(ρ+2,∞) , (2.8)

and

‖u‖α,β,T = sup
−T<t<T

|t|(α−β)/d‖u(t)‖L(ρ+2,∞) . (2.9)

The next lemma establishes the boundedness of the linear group U(t) in
weak Lebesgue spaces.

Lemma 2.3. Let 1 < p < 2. If p′ is such that 1
p + 1

p′ = 1, then there exists

a constant C = C(n, p) > 0 such that

‖U(t)φ‖L(p′,∞) ≤ C|t|−
n
d
( 2
p
−1)‖φ‖L(p,∞) , (2.10)

for all φ ∈ L(p,∞)(Rn) and all t 6= 0.
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Proof. Without loss of generality assume t > 0. From (1.8) it follows that
U(t) is bounded from L2(Rn) into itself. Moreover, since

U(t)φ(x) = t−n/dG(t−1/d(·)) ∗ φ(x),

it follows from assumption (H2) and the Young inequality that

‖U(t)φ‖L∞ ≤ t−n/d‖φ‖L1 .

The Riesz–Thorin interpolation theorem establishes (2.10) if we replace the
weak Lebesgue spaces by the usual Lebesgue spaces (this was already estab-
lished in [18]). Then the real interpolation method gives us the desired result
(see e.g. [30, Theorem 3.1] and [37]). See also [5] for a similar result. �

Lemma 2.4. Let 1 < ρ <∞ and let B be defined as

B(u) = i

∫ t

0
U(t− s)(χ|u|ρu+ buE(|u|ρ))(s) ds. (2.11)

(i) If nρ
d < ρ+2

ρ+1 , then there exists a positive constant Kα,β such that

‖B(u)−B(v)‖α,β,T ≤ Kα,βT
γ
(
‖u‖ρα,β,T + ‖v‖ρα,β,T

)
‖u− v‖α,β,T , (2.12)

for all u, v ∈ ETα,β, where γ = 1− (α−β)(ρ+1)
d .

(ii) If ρ+2
ρ+1 <

nρ
d < ρ + 2, then there exists a positive constant Kα such

that

‖B(u)−B(v)‖α ≤ Kα(‖u‖ρα + ‖v‖ρα)‖u− v‖α, (2.13)

for all u, v ∈ Eα.

Proof. Without loss of generality, we assume t > 0. We first prove inequal-
ity (2.12). By Lemma 2.3, we have

‖B(u)−B(v)‖L(ρ+2,∞) ≤ |χ|
∫ t

0
‖U(t− s)(|u|ρu− |v|ρv)(s)‖L(ρ+2,∞) ds

+ |b|
∫ t

0
‖U(t− s)(uE(|u|ρ)− vE(|v|ρ))(s)‖L(ρ+2,∞) ds

≤ |χ|
∫ t

0
(t− s)−

n
d

(
2(ρ+1)
ρ+2

−1
)
‖(|u|ρu− |v|ρv)(s)‖

L
(
ρ+2
ρ+1 ,∞)

ds

+ |b|
∫ t

0
(t− s)−

n
d

(
2(ρ+1)
ρ+2

−1
)
‖(uE(|u|ρ)− vE(|v|ρ))(s)‖

L
(
ρ+2
ρ+1 ,∞)

ds

= I + II. (2.14)
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We now estimate I. By using the well-known inequality

||u|ρu− |v|ρv| ≤ C(|u|ρ + |v|ρ)|u− v|,
and then Holder’s inequality, we obtain

‖|u|ρu− |v|ρv‖
L
(
ρ+2
ρ+1 ,∞)

≤ C‖
(
|u|ρ + |v|ρ

)
|u− v|‖

L
(
ρ+2
ρ+1 ,∞)

≤ C
(
‖|u|ρ‖

L
(
ρ+2
ρ ,∞)

+ ‖|v|ρ‖
L
(
ρ+2
ρ ,∞)

)
‖u− v‖L(ρ+2,∞)

≤ C
(
‖u‖ρ

L(ρ+2,∞) + ‖v‖ρ
L(ρ+2,∞)

)
‖u− v‖L(ρ+2,∞) . (2.15)

Thus, for 0 < t < T ,

I ≤ C
∫ t

0
(t− s)−

n
d
(
2(ρ+1)
ρ+2

−1)

×
(
‖u(s)‖ρ

L(ρ+2,∞) + ‖v(s)‖ρ
L(ρ+2,∞)

)
‖(u− v)(s)‖L(ρ+2,∞) ds

≤ C
(
‖u‖ρα,β,T + ‖v‖ρα,β,T

)
‖u− v‖α,β,T

×
∫ t

0
(t− s)−

n
d
(
2(ρ+1)
ρ+2

−1)
s−

α−β
d

(ρ+1) ds

≤ C
(
‖u‖ρα,β,T + ‖v‖ρα,β,T

)
‖u− v‖α,β,T t−

α−β
d tγ

×
∫ 1

0
(1− s)−

α−β
d s−

α−β
d

(ρ+1) ds, (2.16)

where in the last inequality we have used that

α−β
d = n

d

(
2(ρ+1)
ρ+2 − 1

)
.

Since nρ
d < ρ+2

ρ+1 , we easily obtain α−β
d < 1 and α−β

d (ρ + 1) < 1. Hence, the

integral in (2.16) is finite, and thus

I ≤ Kα,βT
γ
(
‖u‖ρα,β,T + ‖v‖ρα,β,T

)
‖u− v‖α,β,T t−

α−β
d . (2.17)

To estimate II, we observe that by writing

E(|u|ρ)u− E(|v|ρ)v = E(|u|ρ)(u− v) + E(|u|ρ − |v|ρ)v,
using Hölder’s inequality and hypothesis (H3), we get

‖E(|u|ρ)u− E(|v|ρ)v‖
L
(
ρ+2
ρ+1 ,∞)

≤ ‖E(|u|ρ)‖
L
(
ρ+2
ρ ,∞)

‖u− v‖L(ρ+2,∞) + ‖E(|u|ρ − |v|ρ)‖
L
(
ρ+2
ρ ,∞)

‖v‖L(ρ+2,∞)
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≤ C
(
‖u‖ρ

L(ρ+2,∞)‖u− v‖L(ρ+2,∞) + ‖|u|ρ − |v|ρ‖
L
(
ρ+2
ρ ,∞)

‖v‖L(ρ+2,∞)

)
.

Next, since

||u|ρ − |v|ρ| ≤ C(|u|ρ−1 + |v|ρ−1)|u− v|,
we have

‖E(|u|ρ)u− E(|v|ρ)v‖
L
(
ρ+2
ρ+1 ,∞)

≤ C
(
‖u‖ρ

L(ρ+2,∞)‖u− v‖L(ρ+2,∞) + ‖|u|ρ−1 + |v|ρ−1‖
L
(
ρ+2
ρ−1 ,∞)

× ‖u− v‖L(ρ+2,∞)‖v‖L(ρ+2,∞)

)
≤ C

(
‖u‖ρ

L(ρ+2,∞)‖u− v‖L(ρ+2,∞) +
(
‖u‖ρ−1

L(ρ+2,∞) + ‖v‖ρ−1
L(ρ+2,∞)

)
× ‖u− v‖L(ρ+2,∞)‖v‖L(ρ+2,∞)

)
≤ C

(
‖u‖ρ

L(ρ+2,∞) + ‖v‖ρ
L(ρ+2,∞)

)
‖u− v‖L(ρ+2,∞) . (2.18)

Therefore, the estimate for II follows exactly in the same way as that for I;
that is,

II ≤ Kα,βT
γ
(
‖u‖ρα,β,T + ‖v‖ρα,β,T

)
‖u− v‖α,β,T t−

α−β
d . (2.19)

Gathering together (2.14), (2.17), and (2.19), we obtain, for 0 < t < T ,

t
α−β
d ‖B(u)−B(v)‖L(ρ+2,∞) ≤ Kα,βT

γ
(
‖u‖ρα,β,T + ‖v‖ρα,β,T

)
‖u− v‖α,β,T ,

and the proof of part (i) is completed.
To prove (2.13), we proceed as in (2.12). Indeed, from (2.15) and (2.18),

we have

‖B(u)−B(v)‖L(ρ+2,∞) ≤ C
∫ t

0
(t− s)−

n
d

(
2(ρ+1)
ρ+2

−1
)

×
(
‖u(s)‖ρ

L(ρ+2,∞) + ‖v(s)‖ρ
L(ρ+2,∞)

)
‖(u− v)(s)‖L(ρ+2,∞) ds

≤ C(‖u‖ρα + ‖v‖ρα)‖u− v‖α
∫ t

0
(t− s)−

n
d

(
2(ρ+1)
ρ+2

−1
)
s−

α
d
(ρ+1) ds

≤ C(‖u‖ρα + ‖v‖ρα)‖u− v‖αt−
n
d
(
2(ρ+1)
ρ+2

−1)
t−

α
d
(ρ+1)t

×
∫ 1

0
(1− s)−

n
d

(
2(ρ+1)
ρ+2

−1
)
s−

α
d
(ρ+1) ds.
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From the definition of α, we see that

n

d

(2(ρ+ 1)

ρ+ 2
− 1
)

+
α

d
ρ = 1. (2.20)

Moreover, since ρ+2
ρ+1 <

nρ
d , we obtain α

d (ρ+ 1) < 1, and from nρ
d < ρ+ 2, we

have n
d (2(ρ+1)

ρ+2 − 1) < 1. So,

‖B(u)−B(v)‖L(ρ+2,∞)

≤ C(‖u‖ρα + ‖v‖ρα)‖u− v‖αt−
α
d

∫ 1

0
(1− s)−

n
d

(
2(ρ+1)
ρ+2

−1
)
s−

α
d
(ρ+1) ds

= Kα(‖u‖ρα + ‖v‖ρα)‖u− v‖αt−
α
d .

This completes the proof of the lemma. �

Remark 2.5. The restriction ρ > 1 has appeared only when we estimate
the term II in (2.14). Hence, in the case b = 0, the assumption (H3) is not
necessary and Lemma 2.4 holds for 0 < ρ <∞.

3. Main results

In this section we prove our main results. We start with a local well-
posedness result. For the nonlinear Schrödinger equation (1.2), a similar
approach is used in [5]. Our result extends that one. More precisely, we
have the following.

Theorem 3.1 (Local Existence). Let 1 < ρ < ∞ and nρ
d < ρ+2

ρ+1 . If φ ∈

L
( ρ+2
ρ+1

,∞)
, then there exist 0 < T <∞ and a unique solution u ∈ ETα,β of the

integral equation (1.5) with T = T (‖φ‖
L
(
ρ+2
ρ+1 ,∞)

). Moreover, if φn ∈ L( ρ+1
ρ+2

,∞)

is a sequence of functions satisfying φn → φ in L
( ρ+1
ρ+2

,∞)
, then there exist

0 < T0 < ∞ and n0 ∈ N such that, for n ≥ n0, the solutions un and u of
the integral equation (1.5) with respective initial data φn and φ lie in ET0α,β,

and un → u, as n → ∞, in ET0α,β. In addition, the flow map φ 7→ u from

L
( ρ+2
ρ+1

,∞)
to ET0α,β, is Lipschitz continuous.

Proof. The proof is based on the Banach fixed-point theorem. We consider
the integral operator

(Φu)(t) = U(t)φ+ (Bu)(t), (3.1)

where B is defined as in (2.11).
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Let B(0, 2R) be the closed ball in ETα,β with radius 2R and centered at
the origin. We will show that there exist R > 0 and T > 0 such that Φ maps
B(0, 2R) ⊂ ETα,β into itself and Φ : B(0, 2R)→ B(0, 2R) is a contraction.

First, we take u ∈ B(0, 2R) and prove that ‖Φu‖α,β,T ≤ 2R. From (3.1)
we conclude that

‖Φu‖α,β,T ≤ ‖U(·)φ‖α,β,T + ‖Bu‖α,β,T . (3.2)

Since α−β
d −

n
d

(
2(ρ+1)
ρ+2 − 1

)
= 0, in view of Lemma 2.3, we have

‖U(·)φ‖α,β,T ≤ ‖φ‖
L
(
ρ+2
ρ+1 ,∞)

. (3.3)

Now, from Lemma 2.4 and the fact that u ∈ B(0, 2R), we get

‖Bu‖α,β,T ≤ Kα,βT
γ‖u‖ρ+1

α,β,T ≤ Kα,βT
γ2ρ+1Rρ+1, (3.4)

where γ = 1− α−β
d (ρ+ 1) > 0. From inequalities (3.2)–(3.4), we obtain

‖Φu‖α,β,T ≤ ‖φ‖
L
(
ρ+2
ρ+1 ,∞)

+Kα,βT
γ2ρ+1Rρ+1. (3.5)

By taking R = ‖φ‖
L
(
ρ+2
ρ+1 ,∞)

and then T > 0 such that

Kα,βT
γ2ρ+1Rρ ≤ 1

3ρ
, (3.6)

we have

‖Φu‖α,β,T ≤ R+
R

3ρ
≤ 2R.

Using the same arguments as above and the definitions of T and R in (3.6),
one proves that Φ contracts in B(0, 2R). An application of the Banach
fixed-point theorem then gives the existence of a unique solution of (1.5) in
B(0, 2R).

To prove the continuous dependence, we take φ and φn in L
( ρ+2
ρ+1

,∞)
such

that φn → φ in L
( ρ+2
ρ+1

,∞)
. For each n, there exist Tn > 0 and a unique

un ∈ ETnα,β satisfying

‖un‖α,β,Tn ≤ 2‖φn‖
L
(
ρ+2
ρ+1 ,∞)

(3.7)

and

un(t) = U(t)φn + (Bun)(t). (3.8)

Also there exists a unique u ∈ ET0α,β satisfying

‖u‖α,β,T0 ≤ 2R (3.9)
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and

u(t) = U(t)φ+ (Bu)(t), (3.10)

where R and T0 are defined as in (3.6) with T0 instead of T . From (3.6),
since Tn varies continuously with ‖φn‖

L
(
ρ+2
ρ+1 ,∞)

, without loss of generality, we

may assume Tn ≥ T0 for n large enough (if necessary we can take a smaller
T0). Thus, both un and u are defined in the interval [0, T0] and belong to

ET0α,β.

Next, we shall prove that ‖un − u‖α,β,T0 → 0, as n→∞. From identities
(3.8) and (3.10), we obtain

‖un − u‖α,β,T0 ≤ ‖U(·)(φn − φ)‖α,β,T0 + ‖Bun −Bu‖α,β,T0 . (3.11)

By applying Lemmas 2.3 and 2.4,

‖un − u‖α,β,T0 ≤ ‖φn − φ‖
L
(
ρ+2
ρ+1 ,∞)

+Kα,βT
γ
0 ‖un − u‖α,β,T0

×
(
‖un‖ρα,β,T0 + ‖u‖ρα,β,T0

)
. (3.12)

Now it suffices to prove that

Kα,βT
γ
0

(
‖un‖ρα,β,T0 + ‖u‖ρα,β,T0

)
≤ C < 1. (3.13)

In fact, from inequalities (3.12) and (3.13) it follows that

‖un − u‖α,β,T0 ≤
1

(1− C)
‖φn − φ‖

L
(
ρ+2
ρ+1 ,∞)

, (3.14)

which yields the result. In order to prove (3.13) we use inequalities (3.7) and
(3.9) to obtain

Kα,βT
γ
0 (‖un‖ρα,β,T0 + ‖u‖ρα,β,T0)

≤ Kα,βT
γ
0

(
2ρ‖φn‖ρ

L
(
ρ+2
ρ+1 ,∞)

+ 2ρ‖φ‖ρ
L
(
ρ+2
ρ+1 ,∞)

)
(3.15)

= Kα,βT
γ
0 2ρ
(
‖φn‖ρ

L
(
ρ+2
ρ+1 ,∞)

+Rρ
)
. (3.16)

Since ‖φn − φ‖
L
(
ρ+2
ρ+1 ,∞)

→ 0 as n → ∞, we can choose n0 large enough

such that for n > n0, we have ‖φn‖
L
(
ρ+2
ρ+1 )

< ε + R with 0 < ε < R. Thus,

‖φn‖
L
(
ρ+2
ρ+1 ,∞)

< 2R. By using the definition of T0 in (3.6), we deduce

Kα,βT
γ
0 (‖un‖ρα,β,T0 + ‖u‖ρα,β,T0) ≤ Kα,βT

γ
0 2ρRρ(2ρ + 1)
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=
2ρ + 1

3ρ2
<

2ρ

3ρ
=
(2

3

)ρ
< 1. (3.17)

The last part of the theorem follows from inequality (3.14).
�

Remark 3.2. The condition nρ
d < ρ+2

ρ+1 implies that ρ <
−(n−d)+

√
(n−d)2+8nd

2n .

Thus, in addition to 1 < ρ <∞, we must have

1 < ρ <
−(n− d) +

√
(n− d)2 + 8nd

2n
.

As a consequence, the existence of ρ satisfying the conditions of Theorem 3.1
is restricted to the case n < 3

2d. In particular, if d = 2, we must have n < 3.
Of course, if b = 0, such a restriction is not needed.

Next, we turn to the question of global existence. Unfortunately, the
results are proved under a “smallness condition,” and the global existence
for arbitrary large initial data remains an open problem.

Theorem 3.3 (Global Existence). Let 1 < ρ < ∞ and ρ+2
ρ+1 <

nρ
d < ρ + 2.

Assume that φ is a distribution satisfying ‖U(t)φ‖α ≤ ε, where ε > 0 is
sufficiently small. Then,

(i) The integral equation (1.5) has a unique solution u ∈ Eα satisfying
‖u‖α ≤ 2ε.

(ii) If φn is a sequence of distributions such that ‖U(t)φn−U(t)φ‖α → 0,
as n → ∞, and un and u are the solutions of the integral equation
(1.5) with respective initial data φn and φ, then un → u in Eα.

Proof. To prove (i), we consider the integral operator

(Φu)(t) = U(t)φ+ (Bu)(t),

with B defined in (2.11). As in Theorem 3.1, we use the Banach fixed-point
theorem to find a function u ∈ B(0, 2ε) ⊂ Eα satisfying Φu = u, for some
ε > 0 small enough.

For any u ∈ B(0, 2ε), using the hypothesis that ‖U(t)φ‖α ≤ ε and Lemma
2.4, we conclude that

‖Φu‖α ≤ ε+ ‖Bu‖α ≤ ε+Kα2ρ+1ερ+1.

By choosing ε > 0 such that Kα2ρ+1ερ < 1, we promptly see that ‖Φu‖α ≤
2ε. This proves that Φ : B(0, 2ε)→ B(0, 2ε) is well defined. A similar analy-
sis also shows that Φ is a contraction. The Banach fixed-point theorem then
gives the existence result. The rest of the proof follows as in Theorem 3.1,
so we omit the details. �
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Next we prove the existence of self-similar solutions. To make clear what
it means, we observe that if u(x, t) is a solution of the equation given in

(1.1), so is uλ(x, t) = λd/ρu(λx, λdt), for any λ > 0. A self-similar solution
is a solution of (1.1) such that

u(x, t) = uλ(x, t), ∀ λ > 0. (3.18)

If (3.18) holds, then

u(x, 0) = uλ(x, 0) = λd/ρu(λx, 0), ∀ λ > 0.

This means that u(x, 0) must be homogeneous of degree −d/ρ.
Suppose that φ is homogeneous of degree −d/ρ; that is,

φ(λx) = λ
− d
ρφ(x), ∀ λ > 0. (3.19)

It is easy to see that

U(t)φ(x) = λ
d
ρU(λdt)φ(λx), ∀ λ > 0.

Hence, by taking λ = t−
1
d , we obtain

U(t)φ(x) = t
− 1
ρU(1)φ(t−

1
dx)

and

t
α
d ‖U(t)φ‖L(ρ+2,∞) = t

α
d
− 1
ρ
+ n
d(ρ+2) ‖U(1)φ‖L(ρ+2,∞) = ‖U(1)φ‖L(ρ+2,∞) ,

(3.20)
where we have used (2.5).

Theorem 3.4. Let 1 < ρ < ∞ and ρ+2
ρ+1 < nρ

d < ρ + 2. Assume that

φ is homogeneous of degree −d/ρ and ‖U(1)φ‖L(ρ+2,∞) ≤ ε, where ε > 0
is sufficiently small. Then the solution u obtained in Theorem 3.3 is self-
similar.

Proof. The proof immediately follows from Theorem 3.3, taking into ac-
count (3.20). �

We now look for some reasonable condition on φ to get ‖U(1)φ‖L(ρ+2,∞) <
∞. Here, we use the ideas in [39] and [42].

Theorem 3.5. Let 1 < ρ < ∞ and ρ+2
ρ+1 <

nρ
d < ρ + 2. Assume that φ is

homogeneous of degree −d/ρ and ‖∆0φ‖
L
(
ρ+2
ρ+1 ,∞)

<∞, with ∆0 defined as in

(2.2). Then,
‖U(1)φ‖L(ρ+2,∞) ≤ C‖∆0φ‖

L
(
ρ+2
ρ+1 ,∞)

<∞.

In particular, from (3.20), ‖U(t)φ‖α <∞.



Infinite-energy solutions for NLS-type equations 783

Proof. In view of (2.4), it suffices to prove that there exists a constant
C > 0 satisfying

‖U(1)φ‖
Ḃ0,1
ρ+2,∞

≤ C‖∆0φ‖
L
(
ρ+2
ρ+1 ,∞)

. (3.21)

Let us write U(1)φ = F1 + F2, where

F1 = U(1)(ϕ ∗ φ), F2 = U(1)((1− ϕ̂)∨ ∗ φ),

with ϕ given in Section 2. We first estimate F2. Since U(1) commutes with
∆j , we see from Lemma 2.3 that

‖F2‖Ḃ0,1
ρ+2,∞

=
∑
j∈Z
‖∆jU(1)((1− ϕ̂)∨ ∗ φ)‖L(ρ+2,∞)

=
∑
j∈Z
‖U(1)∆j((1− ϕ̂)∨ ∗ φ)‖L(ρ+2,∞)

≤
∑
j∈Z
‖∆j((1− ϕ̂)∨ ∗ φ)‖

L
(
ρ+2
ρ+1 ,∞)

.

From the definition of ∆j , we observe that ∆j((1−ϕ̂)∨∗φ) = 0 for j ≤ −1.

Thus, using (2.3), the identity ∆̃j∆j((1 − ϕ̂)∨ ∗ φ) = ∆̃j((1 − ϕ̂)∨) ∗ ∆jφ,
and Young’s inequality, we have

‖F2‖Ḃ0,1
ρ+2,∞

≤
∞∑
j=0

‖∆j((1− ϕ̂)∨ ∗ φ)‖
L
(
ρ+2
ρ+1 ,∞)

=
∞∑
j=0

‖∆̃j∆j((1− ϕ̂)∨ ∗ φ)‖
L
(
ρ+2
ρ+1 ,∞)

=

∞∑
j=0

‖∆̃j((1− ϕ̂)∨) ∗∆jφ‖
L
(
ρ+2
ρ+1 ,∞)

≤
∞∑
j=0

‖∆̃j((1− ϕ̂)∨)‖L1‖∆jφ‖
L
(
ρ+2
ρ+1 ,∞)

. (3.22)

But since ∆̃j((1− ϕ̂)∨) = ηj − ηj ∗ ϕ, and ηj(x) = 2jnη(2jx), we have

‖∆̃j((1− ϕ̂)∨)‖L1 ≤ ‖ηj‖L1 + ‖ηj ∗ ϕ‖L1

≤ (1 + ‖ϕ‖L1)‖ηj‖L1 = (1 + ‖ϕ‖L1)‖η‖L1 = C. (3.23)

Moreover, using the homogeneity of φ, we deduce that

∆jφ(x) = (ψj ∗ φ)(x) = 2
j d
ρ (ψ ∗ φ)(2jx) = 2

j d
ρ∆0φ(2jx).
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Hence,

‖∆jφ‖
L
(
ρ+2
ρ+1 ,∞)

= 2
j d
ρ ‖∆0φ(2j ·)‖

L
(
ρ+2
ρ+1 ,∞)

= 2
j
(
d
ρ
−n ρ+1

ρ+2

)
‖∆0φ‖

L
(
ρ+2
ρ+1 ,∞)

.

(3.24)
From (3.22)–(3.24), we then get

‖F2‖Ḃ0,1
ρ+2,∞

≤ C‖∆0φ‖
L
(
ρ+2
ρ+1 ,∞)

∞∑
j=0

2
j
(
d
ρ
−n ρ+1

ρ+2

)
.

Thanks to the inequality ρ+2
ρ+1 <

nρ
d , the above sum is finite.

Next, we estimate F1. By taking into account that ∆jϕ = 0, j ≥ 2, we
have

‖F1‖Ḃ0,1
ρ+2,∞

=
∑
j∈Z
‖∆jU(1)(ϕ ∗ φ)‖L(ρ+2,∞) ≤

∑
j≤1
‖U(1)∆j(ϕ ∗ φ)‖L(ρ+2,∞)

=
∑
j≤1
‖(U(1)ϕ) ∗∆jφ‖L(ρ+2,∞) ≤

∑
j≤1
‖U(1)ϕ‖L1‖∆jφ‖L(ρ+2,∞)

≤ C‖∆0φ‖L(ρ+2,∞)

∑
j≤1

2
j
(
d
ρ
−n 1

ρ+2

)
,

the sum being finite now due to the inequality nρ
d < ρ + 2. Because ρ+2

ρ+1 <

ρ + 2, an application of the Bernstein inequality (see Proposition 2.1) then
gives the desired estimate, that is,

‖F1‖Ḃ0,1
ρ,∞
≤ C‖∆0φ‖

L
(
ρ+2
ρ+1 ,∞)

.

This completes the proof of the theorem. �

In the next corollary, Sn−1 denotes the unit sphere in Rn.

Corollary 3.6. Let 1 < ρ < ∞ and ρ+2
ρ+1 <

nρ
d < ρ + 2. Let Φ ∈ Ck(Sn−1)

and suppose that
ρ+ 2

ρ+ 1

(d
ρ

+ k
)
> n. (3.25)

Define the homogeneous function

φ(x) = εΦ
( x
|x|

)
|x|−d/ρ,

where ε > 0 is sufficiently small. Then, the global solution u given in Theo-
rem 3.3 with initial data φ is self-similar.
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Proof. From Theorems 3.4 and 3.5 it suffices to show that, for ε = 1,
‖∆0φ‖

L
(
ρ+2
ρ+1 ,∞)

<∞. To prove this, it is enough to establish that

‖∆0φ‖
L
(
ρ+2
ρ+1 ,∞)

≤ C‖Φ‖Ck ,

for some positive constant C. The continuous embedding of L
ρ+2
ρ+1 in L

( ρ+2
ρ+1

,∞)

then implies that we have to show the estimate

‖∆0φ‖
L
ρ+2
ρ+1
≤ C‖Φ‖Ck . (3.26)

But since d
ρ < nρ+1

ρ+2 < n, estimate (3.26) follows as in the proof of Lemma 1

in [39] (see also [38]). �

Remark 3.7. If k = n, then (3.25) is obviously satisfied.

Our next result is concerned with nonlinear scattering.

Theorem 3.8 (Scattering). Let u be the global solution of the integral equa-
tion (1.5) given by Theorem 3.3 corresponding to the initial data φ. Then,

there exists u± ∈ L(ρ+2,∞) satisfying

‖U(t)u±‖α <∞, (3.27)

and
‖u(t)− U(t)u±‖L(ρ+2,∞) ≤ C|t|−

α
d ‖u‖ρ+1

α , t 6= 0. (3.28)

In particular,
lim

t→±∞
‖u(t)− U(t)u±‖L(ρ+2,∞) = 0.

In addition, for any δ > 0,

lim
t→±∞

|t|
α
d
−δ‖u(t)− U(t)u±‖L(ρ+2,∞) = 0.

Proof. We only prove the existence of u+. For short, let us denote F (s) =
(χ|u|ρu+ buE(|u|ρ))(s). From (1.5), we have, for t > 1,

U(−t)u(t) = φ+ i

∫ 1

0
U(−s)F (s) ds+ i

∫ t

1
U(−s)F (s) ds. (3.29)

As in the proof of Lemma 2.4-(ii),∫ t

1
‖U(−s)F (s)‖L(ρ+2,∞) ds ≤ C‖u‖ρ+1

α

∫ t

1
s
−n
d

(
2(ρ+1)
ρ+2

−1
)
s−

α
d
(ρ+1) ds

≤ C(2ε)ρ+1

∫ t

1
s−
(
1+α

d

)
ds ≤ C(ε)(1− t

−α
d ),
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where in the second inequality we have used (2.20). This implies that there

exists u+ ∈ L(ρ+2,∞) such that the left-hand side of (3.29) converges, in

L(ρ+2,∞), to u+, as t→∞; that is,

u+ = φ+ i

∫ ∞
0

U(−s)F (s) ds.

Since

U(t)u+ = U(t)φ+ i

∫ ∞
0

U(t− s)F (s) ds,

to prove (3.27) we only have to show that the integral part belongs to Eα.
We can write∫ ∞

0
U(t− s)F (s) ds =

∫ t

0
U(t− s)F (s) ds+

∫ ∞
t

U(t− s)F (s) ds. (3.30)

The first integral on the right-hand side of (3.30) can be estimated as in the
proof of Lemma 2.4-(ii), so that∫ t

0
‖U(t− s)F (s)‖L(ρ+2,∞) ds ≤ Ct−

α
d ‖u‖ρ+1

α . (3.31)

For the second integral, we have∫ ∞
t
‖U(t− s)F (s)‖L(ρ+2,∞) ds

≤ Ct−
α
d ‖u‖ρ+1

α

∫ ∞
1

(s− 1)
−n
d

(
2(ρ+1)
ρ+2

−1
)
s−

α
d
(ρ+1) ds. (3.32)

Thus, it remains to prove that the above integral is finite. Fix any r0 > 1
and write∫ ∞

1
(s− 1)

−n
d

(
2(ρ+1)
ρ+2

−1
)
s−

α
d
(ρ+1) ds

=

∫ r0

1
(s− 1)

−n
d

(
2(ρ+1)
ρ+2

−1
)
s−

α
d
(ρ+1) ds+

∫ ∞
r0

(s− 1)
−n
d

(
2(ρ+1)
ρ+2

−1
)
s−

α
d
(ρ+1) ds

= I1 + I2.

Since n
d

(2(ρ+1)
ρ+2 − 1

)
< 1 (see (2.20)), it follows that I1 is finite. Now, for I2,

I2 =

∫ ∞
r0

( s

s− 1

)n
d

(
2(ρ+1)
ρ+2

−1
)
s
−
(
n
d

(
2(ρ+1)
ρ+2

−1
)
+αρ

d
+α
d

)
ds ≤ C

∫ ∞
r0

s−
(
1+α

d

)
ds,
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where we have used that the function s 7→ ( s
s−1)

n
d
(
2(ρ+1)
ρ+2

−1)
is bounded. This

last integral is obviously finite. Estimate (3.28) is proved similarly. The
proof of the theorem is completed. �

Next, we shall prove two results concerning the behavior of the solutions
given in Theorems 3.3 and 3.1. These results are similar to those established
in [5] for the Schrödinger equation.

Theorem 3.9 (Asymptotic Stability). Let δ > 0 satisfying δ+ α
d (ρ+1) < 1.

Let u and v be two global solutions of the integral equation (1.5) given by

Theorem 3.3, corresponding to the initial conditions φ and φ̃, respectively. If

lim
|t|→∞

|t|
α
d
+δ‖U(t)(φ− φ̃)‖L(ρ+2,∞) = 0,

then

lim
|t|→∞

|t|
α
d
+δ‖u(t)− v(t)‖L(ρ+2,∞) = 0.

Proof. Assume t > 0. Note that, from (2.15) and (2.18),

‖u(t)− v(t)‖L(ρ+2,∞) ≤ ‖U(t)(φ− φ̃)‖L(ρ+2,∞)

+

∫ t

0
(t− s)−

n
d

(
2(ρ+1)
ρ+2

−1
)(
‖u(s)‖ρ

L(ρ+2,∞) + ‖v(s)‖ρ
L(ρ+2,∞)

)
× ‖u(s)− v(s)‖L(ρ+2,∞) ds.

Since ‖u‖α, ‖v‖α ≤ 2ε, we deduce

‖u(t)− v(t)‖L(ρ+2,∞) ≤ ‖U(t)(φ− φ̃)‖L(ρ+2,∞)

+ C2ρ+1ερt−
α
d
−δ
∫ 1

0

{
(1− s)−

α−β
d s−

α
d
(ρ+1)−δ(st)

α
d
+δ

× ‖u(st)− v(st)‖L(ρ+2,∞)

}
ds, (3.33)

where we have used that

n

d

(2(ρ+ 1)

ρ+ 2
− 1
)

=
α− β
d

= 1− α

d
ρ =

nρ

d(ρ+ 2)
.

Now we define

Λ = lim sup
t→∞

t
α
d
+δ‖u(t)− v(t)‖L(ρ+2,∞) ≥ 0.
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It is enough to prove that Λ = 0. Assume for the sake of contradiction that
Λ > 0. From (3.33) we see that

Λ ≤
(
C2ρ+1ερ

∫ 1

0
(1− s)−

α−β
d s−

α
d
(ρ+1)−δ ds

)
Λ.

From the above inequality we then obtain

C2ρ+1ερ
∫ 1

0
(1− s)−

α−β
d s−

α
d
(ρ+1)−δ ds ≥ 1.

This is a contradiction, since ε > 0 can be chosen to be small enough. Hence
Λ = 0 and the theorem is proved. �

Theorem 3.10 (Decay). Let γ = 1− (α−β)(ρ+1)
d > 0 and δ > −γ. Let u and

v be two local solutions of the integral equation (1.5) given by Theorem 3.1,

corresponding to the initial conditions φ and φ̃, respectively. If

lim
|t|→0

|t|
α−β
d
−δ‖U(t)(φ− φ̃)‖L(ρ+2,∞) = 0,

then

lim
|t|→0

|t|
α−β
d
−δ‖u(t)− v(t)‖L(ρ+2,∞) = 0.

Proof. Assume t > 0. The proof is similar to that of Theorem 3.9. Indeed,
by noting that

γ =
α− β
d
− δ − α− β

d
− α− β

d
(ρ+ 1) + δ + 1,

we may write

t
α−β
d
−δ‖u(t)− v(t)‖L(ρ+2,∞) ≤ t

α−β
d
−δ‖U(t)(φ− φ̃)‖L(ρ+2,∞) (3.34)

+ C2ρ+1ερtγ
∫ 1

0
(1− s)−

α−β
d s−

α−β
d

(ρ+1)+δ(st)
α−β
d
−δ‖u(st)− v(st)‖L(ρ+2,∞) ds.

By writing

Λ = lim sup
t→0

t
α−β
d
−δ‖u(t)− v(t)‖L(ρ+2,∞) <∞,

we get, after taking the limit in (3.34), as t→ 0,

0 ≤ Λ ≤
(

ΛC2ρ+1ερ
∫ 1

0
(1− s)−

α−β
d s−

α−β
d

(ρ+1)+δ ds
)

lim
t→0

tγ = 0,

because Λ <∞. This completes the proof. �
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Remark 3.11. According to Remark 2.5, in the case b = 0, the range
0 < ρ < ∞ is allowed, so that all of our results in this section are valid, a
priori, for 0 < ρ <∞.

4. Applications

In this section we apply our results to some well-known equations.

4.1. The Nonlinear Schrödinger Equation. We consider the nonlinear
Schrödinger (NLS) equation

i∂tu+ Lu = χ|u|ρu, (x, t) ∈ Rn × R, n ≥ 1, (4.1)

where χ is a real constant, ρ > 0, and L is an operator satisfying assumptions
(H1) and (H2). Since b = 0, the assumption (H3) is not needed in this
situation.

In the case L = ∆, where ∆ stands for the Laplacian operator, (4.1) reads
as the standard NLS equation. In the same spirit of our work, the NLS
equation was studied in [5], [7], [8], and [6]. In this case, all of our results in
Section 3 apply (recall that 0 < ρ ≤ 1 can also be included).

Another particular case of interest is the so-called nonelliptic NLS equa-
tion, in which

Lu =
n∑
j=1

aj
∂2u

∂x2j
, (4.2)

and at least two of the aj have opposite sign. Here, we have d = 2. To fix
ideas let us take n = 2 and q(ξ) = ξ21 − ξ22 , ξ = (ξ1, ξ2) ∈ R2. Existence of
solutions for (4.1), with L as in (4.2), in the classical Sobolev spaces, was
addressed in [17], [18], and quite recently in [34]. In particular, for ρ = 2, by
using the Fourier restriction method, the author in [34] has obtained sharp
bilinear estimates in the Bourgain spaces Xs,b for s ≥ 0. Once again, all of
our results in Section 3 apply in this case.

4.2. The Davey–Stewartson system. Let us consider the Davey–Ste-
wartson (DS) system{

iut + δ∂2x1u+
∑n

j=2 ∂
2
xju = χ|u|ρu+ bu∂x1ϕ,

∂2x1ϕ+m∂2x2ϕ+
∑n

j=3 ∂
2
xjϕ = ∂x1(|u|ρ),

(4.3)

where (x, t) ∈ Rn ×R, x = (x1, x2, . . . , xn), n ≥ 2, u = u(x, t) is a complex-
valued function, ϕ = ϕ(x, t) is a real-valued function, and ∂xj stands for the
partial derivative with respect to xj . The parameters δ, χ, b, and m are real
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constants. Of course, the summation in the second equation does not exist
if n = 2.

In case n = 2 and ρ = 2, system (4.3) was derived by Davey and Stew-
artson [14] as a model for the evolution of weakly nonlinear packets of water
waves that travel predominantly in one direction, but for which the ampli-
tude of the waves is modulated in two directions. From the physical point of
view, u represents the short-wave and ϕ represents the long-wave amplitude.

System (4.3) was classified by Ghidaglia and Saut [17] in the two di-
mensional case as elliptic-elliptic, elliptic-hyperbolic, hyperbolic-elliptic, and
hyperbolic-hyperbolic according to the sign of (δ,m): (+,+), (+,−), (−,+),
and (−,−). For the sake of convenience, we adopt the same classification
here, even for n ≥ 3 and ρ 6= 2.

The IVP associated with (4.3) has gained the attention of a broad com-
munity of researchers in the past few years. As far as we know, it has started
with [18]. In particular, by considering the elliptic-elliptic and hyperbolic-
elliptic cases, the authors established local well-posedness in L2(R2), H1(R2),
and H2(R2). Global and blow-up results were also proved. Moreover, global
existence for small data were established in the elliptic-hyperbolic case (see
also [21], [22], [23], [24], [25], and [28]).

In the elliptic-elliptic case, existence of infinite energy solutions was ad-
dressed in [3] and [43]. By using interpolation spaces and following [6],
the author in [3] proved the existence of global solutions, in weak Lebesgue
spaces, for dimensions 2 and 3. As a result, the existence of self-similar
solutions was also proved. In [43], the author used the ideas of [7] to prove
the existence of self-similar solutions.

The elliptic-elliptic and hyperbolic-elliptic cases are easier to deal with
because, at least formally, they can be reduced to a nonlinear Schrödinger
equation as in (1.1). Indeed, by using the Fourier transform we see that
(4.3) reduces to (1.1) with

Lu = δ∂2x1u+
n∑
j=2

∂2xju,

and E defined through its Fourier transform by

Ê(f)(ξ) =
ξ21

ξ21 +mξ22 +
∑n

j=3 ξ
2
j

f̂(ξ). (4.4)
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Since

q(ξ) = δξ21 +
n∑
j=2

ξ2j ,

we have d = 2, and the assumptions (H1) and (H2) hold. Moreover, as is
well-known, by the Mihlin–Hörmander multiplier theorem, E is a bounded
operator from Lp(Rn) to Lp(Rn) for any 1 < p <∞. The real interpolation
method (see e.g. [30, Theorem 3.1]) then gives us that E is also bounded

from L(p,∞) to L(p,∞) for any 1 < p < ∞. Thus, (H3) is also satisfied.
Consequently, the results presented in Section 3 do apply to the DS system
(4.3) in the elliptic-elliptic and hyperbolic-elliptic cases. Note that according
to Remark 3.2, Theorem 3.1 only applies if n = 2.

4.3. A generalized Davey–Stewartson system. We also consider the
generalized two-dimensional Davey–Stewartson system

i∂tu+ δ∂2x1u+ ∂2x2u = χ|u|ρu+ bu(∂x1ϕ+ ∂x2φ),

∂2x1ϕ+m2∂
2
x2ϕ+ `∂2x1x2φ = ∂x1(|u|ρ),

λ∂2x1φ+m1∂
2
x2φ+ `∂2x1x2ϕ = ∂x2(|u|ρ),

(4.5)

where (x, t) ∈ R2×R, x = (x1, x2), u = u(x, t) is a complex-valued function,
and ϕ = ϕ(x, t) and φ = φ(x, t) are real-valued functions. The parameters δ,
χ, and b are real constants, and m1, m2, λ, and ` satisfy the “fundamental”
relation

(λ− 1)(m2 −m1) = `2. (4.6)

For ρ = 2, system (4.5) was derived quite recently in [2], and it is a model
to describe the wave propagation in a bulk medium composed of an elastic
material with couple stresses.

A similar classification as that for (4.3) according the sign of (m1,m2, λ)
can be made (see [1]).

Under suitable conditions on the parameters, global existence in H1(Rn)
and existence/nonexistence of ground states, as well as their orbital stability,
were studied in [1].

To write (4.5) in form (1.1), one first takes the Fourier transform in the
second and third equations of (4.5) to get{

−(ξ21 +m2ξ
2
2)ϕ̂(ξ)− `ξ1ξ2φ̂(ξ) = iξ1(|u|ρ)∧(ξ),

−(λξ21 +m1ξ
2
2)φ̂(ξ)− `ξ1ξ2ϕ̂(ξ) = iξ2(|u|ρ)∧(ξ).

(4.7)
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Equations (4.7) can be seen as an algebraic system in φ̂(ξ) and ϕ̂(ξ). Thus,
if

Λ(ξ1, ξ2) = (ξ21 +m2ξ
2
2)(λξ21 +m1ξ

2
2)− `2ξ21ξ22 (4.8)

= (ξ21 +m1ξ
2
2)(λξ21 +m2ξ

2
2) 6= 0,

for (ξ1, ξ2) 6= (0, 0), we can solve (4.7) and obtain

ϕ̂(ξ) =
iξ1

Λ(ξ1, ξ2)
(`ξ22 − λξ21 −m1ξ

2
2)(|u|ρ)∧(ξ), (4.9)

φ̂(ξ) =
iξ2

Λ(ξ1, ξ2)
(`ξ21 − ξ21 −m2ξ

2
2)(|u|ρ)∧(ξ). (4.10)

Note that in (4.8) we have used (4.6). Now, substituting (4.9) and (4.10) in
the first equation of (4.5), we face the equation

i∂tu+ δ∂2x1u+ ∂2x2u = χ|u|ρu+ buE(|u|ρ), (4.11)

with E defined by

Ê(f)(ξ) =
λξ41 + (1 +m1 − 2`)ξ21ξ

2
2 +m2ξ

4
2

Λ(ξ1, ξ2)
f̂(ξ) = e(ξ)f̂(ξ). (4.12)

Remark 4.1. To obtain that Λ(ξ1, ξ2) 6= 0, for (ξ1, ξ2) 6= (0, 0) it suffices to
assume m1 > 0 and either m2 > 0 and λ > 0, or m2 < 0 and λ < 0.

Since q(ξ) = δξ21 + ξ22 , we have d = 2 again, and the assumptions (H1)
and (H2) are satisfied. Moreover, since e(ξ) is homogeneous of degree 0, the
Calderon–Zygmund theory applies, and E : Lp(R2)→ Lp(R2) is bounded for
any 1 < p <∞ (see also [1, page 11543]). Once again, the real interpolation

method implies that E : L(p,∞) → L(p,∞) is bounded for any 1 < p <∞.

4.4. The Grimshaw system. Let us now consider the following two di-
mensional equation:

i∂tu+ λ1∂
2
x1u+ λ2∂

2
x2u = χ|u|ρu+ uS(u), (4.13)

where S = S1 + S2, with

∆S2 = ν0∂
2
x2(|u|ρ),

S1 =
∞∑
s=1

δsWs,

∆Ws − γs∂2x1Ws = ν̃s∂
2
x2(|u|ρ),

where (x, t) ∈ R2 × R, x = (x1, x2), and u = u(x, t) is a complex-valued
function. For ρ = 2, (4.13) was deduced by Grimshaw (see [15, page 257]),
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and it describes the amplitude of the vertical component of the velocity of
an inviscid, incompressible, stratified fluid occupying a horizontal channel
along which an internal gravity-wave packet is propagating (see also [18]).
The parameters λ1, λ2, χ, ν0, γs, δs, and ν̃s are all real constants with δs > 0
and γs > 0.

By assuming that γs < 1, s = 1, 2, . . ., we can rewrite (4.13) as (1.1), with
E = E1 + E2, and

Ê2(f)(ξ) = ν0
ξ22

ξ21 + ξ22
f̂(ξ),

E1 =
∞∑
s=1

δsWs, Ŵs(f)(ξ) = ν̃s
ξ22

(1− γs)ξ21 + ξ22
f̂(ξ).

Under such conditions, (4.13) has behavior similar to the Davey–Stewartson
system (4.3). In particular, the results of [17] also apply here, in order to
obtain finite-energy solutions.

Note we have d = 2 and the assumptions (H1) and (H2) are fulfilled. The
Calderon–Zygmund theory can be applied in order to show that E2 and Ws,
s = 1, 2 . . ., are bounded operators from Lp(R2) to Lp(R2), 1 < p < ∞. In
addition, the norm of Ws is bounded by ν̃s. If we assume that

∞∑
s=1

δsν̃s <∞,

we promptly see that E1 is also bounded from Lp(R2) to Lp(R2), 1 < p <∞.
The real interpolation method then gives the hypotheses (H3).

4.5. The Shrira system. Here we consider the three-dimensional model{
i∂tu+

ωkk
2
∂2xu+

ω``
2
∂2yu+

ωnn
2
∂2zu+ ωnk∂

2
xzu = −uQ,

∂2xQ+ ∂2yQ = ν∂2y |u|ρ,
(4.14)

where (x, t) ∈ R3 × R, x = (x, y, z), and u = u(x, t) is a complex-valued
function. For ρ = 2, (4.14) was derived by Shrira (see [40, page 132]), and
it models the evolution of a three-dimensional packet of weakly nonlinear
internal gravity waves propagating obliquely at an arbitrary angle to the
vertical. The real parameters ωkk, ω``, ωnn, ωnk, and ν can be calculated in
terms of the wave vector of the main wave and the angle between the x-axis
and the wave vector. Moreover, the following non-degeneracy condition is
assumed:

ωll(ωkkωnn − ωnk) 6= 0, ωkk 6= 0, ωnn 6= 0.
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We can rewrite (4.14) as an equation of the form (1.1) by solving the
second equation. It turns out that E is defined by

Ê(f)(ξ) = ν
ξ22

ξ21 + ξ22
f̂(ξ), ξ = (ξ1, ξ2, ξ3) ∈ R3.

Local well-posedness of the Cauchy problem associated with (4.14), in
H1(R3), may be obtained in [17, Theorem 2.2].

Once again we have d = 2, and assumptions (H1) and (H2) hold. The
Calderon–Zygmund theory can not be applied to this situation. However,
by using interpolation with BMO and Hardy spaces, one can still prove that
E : Lp(R3) → Lp(R3) is bounded for any 1 < p < ∞ (see [18, page 184]).

The real interpolation method gives that E : L(p,∞) → L(p,∞) is bounded for
any 1 < p <∞.
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