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GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS

FOR A WAVE EQUATION WITH NON-CONSTANT DELAY AND

NONLINEAR WEIGHTS

VANESSA BARROS, CARLOS NONATO AND CARLOS RAPOSO⇤

(Communicated by Chunlai Mu)

Abstract. We consider the wave equation with a weak internal damping with
non-constant delay and nonlinear weights given by

utt(x, t)� uxx(x, t) + µ1(t)ut(x, t) + µ2(t)ut(x, t� ⌧(t)) = 0

in a bounded domain. Under proper conditions on nonlinear weights µ1(t), µ2(t)
and non-constant delay ⌧(t), we prove global existence and estimative the decay
rate for the energy.

1. Introduction

This paper is concerned with the initial boundary value problem
(1)8
>><

>>:

utt(x, t)� uxx(x, t) + µ1(t)ut(x, t) + µ2(t)ut(x, t� ⌧(t)) = 0 in ⌦⇥]0,+1[,
u(0, t) = u(L, t) = 0 on ]0,+1[,
u(x, 0) = u0(x), ut(x, 0) = u1(x) on ⌦,
ut(x, t� ⌧(0)) = f0(x, t� ⌧(0)) in ⌦⇥]0, ⌧(0)[,

where ⌦ =]0, L[, 0 < ⌧(t) are a non-constant time delay, µ1(t), µ2(t) are non-
constant weights and the initial data (u0, u1, f0) belong to a suitable function space.

This problem has been first proposed and studied in Nicaise and Pignotti [22] in
case of constant coe�cients µ1, µ2 and constant time delay. Under suitable assump-
tions, the authors proved the exponential stability of the solution by introducing
suitable energies and by using some observability inequalities. Some instability
results are also given for the case of the some assumptions is not satisfied.

With a weight depending on time, µ1(t), µ2(t) and constant time delay, this
problem was studied in [2], where the existence of solution was made by Faedo-
Galerkin method and a decay rate estimate for the energy was given by using the
multiplier method.

W. Liu in [19] studied the weak viscoelastic equation with an internal time vary-
ing delay term. By introducing suitable energy and Lyapunov functionals, he es-
tablishes a general decay rate estimate for the energy under suitable assumptions.
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F. Tahamtani and A. Peyravi [29] investigated the nonlinear viscoelastic wave
equation with source term. Using the Potential well theory they showed that the
solutions blow up in finite time under some restrictions on initial data and for
arbitrary initial energy.

Global existence and asymptotic behavior of solutions to the viscoelastic wave
equation with a constant delay term was considered by M. Remil and A. Hakem in
[28].

Global existence and asymptotic stability for a coupled viscoelastic wave equation
with time-varying delay was studied in [3] by combining the energy method with
the Faedo-Galerkin’s procedure.

The stabilization problem by interior damping of the wave equation with bound-
ary or internal time-varying delay was studied in [23] by introducing suitable Lya-
punov functionals.

Energy decay of solutions for the wave equation with a time varying delay term
in the weakly nonlinear internal feedbacks was considered in [11].

For problems with delay in di↵erent contexts we cite [9, 10, 30, 32] with references
therein. In absence of delay (µ2(t) = 0), the problem (1) is exponentially stable
provided that µ1(t) is constant, see, for instance [5, 6, 16, 17, 21] and reference
therein.

Time delay is the property of a physical system by which the response to an
applied force is delayed in its e↵ect, and the central question is that delays source
can destabilize a system that is asymptotically stable in the absence of delays, see
[7]. In fact, an arbitrarily small delay may destabilize a system that is uniformly
asymptotically stable in the absence of delay unless additional control terms have
been used, see for example [8, 12, 31]

By energy method in [24] was studied the stabilization of the wave equation
with boundary or internal distributed delay. By semigroup approach in [27] was
proved the well-posedness and exponential stability for a wave equation with fric-
tional damping and nonlocal time-delayed condition. Transmission problem with
distributed delay was studied in [18] where was established the exponential stability
of the solution by introducing a suitable Lyapunov functional.

Here we consider a wave equation with non-constant delay and nonlinear weights,
thus, the present paper is a generalization of the previous ones. The remaining part
of this paper is organized as follows. In the section 2 we introduce some notations
and prove the dissipative property of the full energy of the system. In the section
3, for an approach combining semigroup theory (see [21] and [4]) with the energy
estimate method we prove the existence and uniqueness of solution. In section 4 we
present the result of exponential stability.

2. Notation and preliminaries

We will need the following hypotheses:
(H1) µ1 : R+ !]0,+1[ is a non-increasing function of class C1(R+) satisfying

(2)

����
µ
0

1(t)

µ1(t)

����  M1, 0 < ↵0  µ1(t), 8t � 0,

where ↵0 and M1 are constants such that M1 > 0.
(H2) µ2 : R+ ! R is a function of class C1(R+),which is not necessarily positives

or monotones, such that

(3) |µ2(t)|  �µ1(t),
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(4) |µ
0

2(t)|  M2µ1(t),

for some 0 < � <
p
1� d and M2 > 0.

We now state a lemma needed later.

Lemma 2.1 (Sobolev-Poincare’s inequality). Let q be a number with 2  q  +1.

Then there is a constant c⇤ = c⇤(]0, L[, q) such that

k k
q
 c⇤ k xk2 , for  2 H

1
0 (]0, L[).

Lemma 2.2 ([13][16]). Let E : R+ ! R+ be a non increasing function and assume

that there are two constants � > �1 and ! > 0 such that

Z +1

S

E
1+�(t) dt 

1

!
E

�(0)E(S), 0  S < +1.

Then

E(t) = 0 8t �
E

�(0)

!|�|
, if � 1 < � < 0,

E(t)  E(0)

✓
1 + �

1 + !�t

◆ 1
�

8t � 0, if � > 0,

E(t)  E(0)e1�!t
8t � 0, if � = 0.

As in [23], we assume that

(5) ⌧(t) 2 W
2,+1([0, T ]), for T > 0

and there exist positive constants ⌧0, ⌧1 and d satisfying

(6) 0 < ⌧0  ⌧(t)  ⌧1, 8t > 0

and

(7) ⌧
0(t)  d < 1, 8t > 0.

We introduce the new variable

(8) z(x, ⇢, t) = ut(x, t� ⌧(t)⇢), x 2 ⌦, ⇢ 2]0, 1[, t > 0.

Then

⌧(t)zt(x, ⇢, t) + (1� ⌧
0(t)⇢)z⇢(x, ⇢, t) = 0, x 2 ⌦, ⇢ 2]0, 1[, t > 0

and problem (1) takes the form
(9)8
>>>><

>>>>:

utt(x, t)� uxx(x, t) + µ1(t)ut(x, t) + µ2(t)z(x, 1, t) = 0 in ⌦⇥]0,+1[,
⌧(t)zt(x, ⇢, t) + (1� ⌧

0(t)⇢)z⇢(x, ⇢, t) = 0 in ⌦⇥]0, 1[⇥]0,+1[,
u(0, t) = u(L, t) = 0 on ]0,+1[,
u(x, 0) = u0(x), ut(x, 0) = u1(x) on ⌦,
z(x, ⇢, 0) = ut(x,�⌧(0)⇢) = f0(x,�⌧(0)⇢) in ⌦⇥]0, 1[.

We define the energy of the solution of problem (9) by

(10) E(t) =
1

2
kutk

2
L2(⌦) +

1

2
kuxk

2
L2(⌦) +

⇠(t)⌧(t)

2

Z

⌦

Z 1

0
z
2(x, ⇢, t) d⇢ dx,

where

(11) ⇠(t) = ⇠̄µ1(t)
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is a non-increasing function of class C1(R+) and ⇠̄ be a positive constant such that

(12)
�

p
1� d

< ⇠̄ < 2�
�

p
1� d

.

Our first result states that the energy is a non-increasing function.

Lemma 2.3. Let (u, z) be a solution to the problem (9). Then, the energy functional
defined by (10) satisfies

E
0(t)  �µ1(t)

✓
1�

⇠̄

2
�

�

2
p
1� d

◆
kutk

2
L2(⌦)

� µ1(t)

✓
⇠̄(1� ⌧

0(t))

2
�

�
p
1� d

2

◆
kz(x, 1, t)k2

L2(⌦)

 0.(13)

Proof. Multiplying the first equation (9) by ut(x, t), integrating on ⌦ and using
integration by parts, we get

1

2

d

dt

⇣
kutk

2
L2(⌦) + kuxk

2
L2(⌦)

⌘
+ µ1(t)kutk

2
L2(⌦) + µ2(t)

Z

⌦
z(x, 1, t)ut dx.(14)

Now multiplying the second equation (9) by ⇠(t)z(x, ⇢, t) and integrate on ⌦⇥]0, 1[,
to obtain

⌧(t)⇠(t)

Z

⌦

Z 1

0
zt(x, ⇢, t)z(x, ⇢, t) d⇢ dx = �

⇠(t)

2

Z

⌦

Z 1

0
(1� ⌧

0(t)⇢)
@

@⇢
(z(x, ⇢, t))2 d⇢ dx.

Consequently,

d

dt

✓
⇠(t)⌧(t)

2

Z

⌦

Z 1

0
z
2(x, ⇢, t) d⇢ dx

◆
= �

⇠(t)

2

Z

⌦

Z 1

0
(1� ⌧

0(t)⇢)
@

@⇢
(z(x, ⇢, t))2 d⇢ dx

+
⇠
0(t)⌧(t)

2

Z

⌦

Z 1

0
z
2(x, ⇢, t) d⇢ dx

=
⇠(t)

2

Z

⌦
(z2(x, 0, t)� z

2(x, 1, t)) dx

+
⇠(t)⌧ 0(t)

2

Z

⌦

Z 1

0
z
2(x, 1, t) d⇢ dx

+
⇠
0(t)⌧(t)

2

Z

⌦

Z 1

0
z
2(x, ⇢, t) d⇢ dx.(15)

From (10), (14) and (15) we obtain

E
0(t) =

⇠(t)

2
kutk

2
L2(⌦) �

⇠(t)

2
kz(x, 1, t)k2

L2(⌦)

+
⇠(t)⌧ 0(t)

2
kz(x, 1, t)k2

L2(⌦) +
⇠
0(t)⌧(t)

2

Z

⌦

Z 1

0
z
2(x, ⇢, t) d⇢ dx

� µ1(t)kutk
2
L2(⌦) � µ2(t)

Z

⌦
z(x, 1, t)ut dx.(16)

Due to Young’s inequality, we have

(17) µ2(t)

Z

⌦
z(x, 1, t)ut dx 

|µ2(t)|

2
p
1� d

kutk
2
L2(⌦) +

|µ2(t)|
p
1� d

2
kz(x, 1, t)k2

L2(⌦).
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Inserting (17) into (16), we obtain

E
0(t)  �

✓
µ1(t)�

⇠(t)

2
�

|µ2(t)|

2
p
1� d

◆
kutk

2
L2(⌦)

�

✓
⇠(t)

2
�

⇠(t)⌧ 0(t)

2
�

|µ2(t)|
p
1� d

2

◆
kz(x, 1, t)k2

L2(⌦)

+
⇠
0(t)⌧(t)

2

Z

⌦

Z 1

0
z
2(x, ⇢, t) d⇢ dx

 �µ1(t)

✓
1�

⇠̄

2
�

�

2
p
1� d

◆
kutk

2
L2(⌦)

� µ1(t)

✓
⇠̄(1� ⌧

0(t))

2
�

�
p
1� d

2

◆
kz(x, 1, t)k2

L2(⌦)

 0.

⇤

Lemma 2.4. Let (u, z) be a solution to the problem (9). Then the energy functional

defined by (10) satisfies

kut(x, t)k
2
L2(⌦) < �

1

�
E

0(t),

where � = a0

⇣
1� ⇠̄

2 �
�

2
p
1�d

⌘
.

Proof. From Lemma 2.3, we have that

�E
0(t) � µ1(t)

✓
1�

⇠̄

2
+

�

2
p
1� d

◆
kutk

2
L2(⌦)

+ µ1(t)

✓
⇠̄(1� ⌧

0(t))

2
+

�
p
1� d

2

◆
kz(x, 1, t)k2

L2(⌦)

� 0

and from (H1), we obtain

0  a0

✓
1�

⇠̄

2
+

�

2
p
1� d

◆
kutk

2
L2(⌦)

 µ1(t)

✓
1�

⇠̄

2
+

�

2
p
1� d

◆
kutk

2
L2(⌦)

 �E
0(t)

and the lemma is proved. ⇤

3. Global solution

For the semigroup setup we U = (u, ut, z)T and rewrite (9) as

(18)

⇢
Ut = A(t)U,
U(0) = U0 = (u0, u1, f0(·,�, ⌧(0)))T ,

where the operator A(t) is defined by

(19) AU =

✓
v, uxx � µ1(t)v � µ2(t)z(x, 1, t),�

1� ⌧
0(t)⇢

⌧(t)
z⇢(x, ⇢, t)

◆T

.
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We introduce the phase space

H = H
1
0 (⌦)⇥ L

2(⌦)⇥ L
2(⌦⇥]0, 1[)

and the domain of A is defined by

(20) D(A(t)) =
�
(u, v, z)T 2 H/v = z(·, 0) in ⌦

 
,

where
H = H

2(⌦) \H
1
0 (⌦)⇥H

1
0 (⌦)⇥ L

2(⌦;H1
0 (]0, 1[)).

Notice that the domain of the operator A(t) is independent of the time t, i.e.,

(21) D(A(t)) = D(A(0)), 8t > 0.

H is a Hilbert space provided with the inner product

(22) hU, ŪiH =

Z

⌦
uxūx dx+

Z

⌦
vv̄ dx+ ⇠(t)⌧(t)

Z

⌦

Z 1

0
zz̄ d⇢ dx,

for U = (u, v, z)T and Ū = (ū, v̄, z̄)T .
Using this time-dependent inner product and the next theorem we will get a

result of existence and uniqueness.

Theorem 3.1. Assume that

(i) Y = D(A(0)) is dense subset of H,

(ii) (21) holds,
(iii) for all t 2 [0, T ], A(t) generates a strongly continuous semigroup on H

and the family A(t) = {A(t)/t 2 [0, T ]} is stable with stability constants C

and m independent of t (i.e., the semigroup (St(s))s�0 generated by A(t)
satisfies kSt(s)ukH  Ce

ms
kukH, for all u 2 H and s � 0),

(iv) @tA(t) belongs to L
1

⇤
([0, T ], B(Y,H)), which is the space of equivalent classes

of essentially bounded, strongly measurable functions from [0, T ] into the set

B(Y,H) of bounded operators from Y into H.

Then, problem (18) has a solution U 2 C([0, T ], Y ) \ C
1([0, T ],H) for

any initial datum in Y .

Our goal is then to check the above assumptions for problem (18).
First, we prove D(A(0)) is dense in H.
The proof is the same as the one Lemma 2.2 of [25], we give it for the sake of

completeness.
Let (f, g, h)T be orthogonal to all elements of DA(0), namely

0 = h(u, v, z)T , (f, g, h)T iH =

Z

⌦
uxfx dx+

Z

⌦
vg dx+ ⇠(t)⌧(t)

Z

⌦

Z 1

0
zh d⇢ dx,

for all (u, v, z)T 2 D(A(0)).
We first take u = v = 0 and z 2 D(⌦⇥]0, 1[). As (0, 0, z)T 2 D(A(0)), we get

Z

⌦

Z 1

0
zh d⇢ dx = 0.

Since D(⌦⇥]0, 1[) is dense in L
2(⌦⇥]0, 1[), we deduce that h = 0. In the same

manner, by taking u = z = 0 e v 2 D(⌦) we see that g = 0.
The above orthogonality condition is then reduced to

0 =

Z

⌦
uxfx dx, 8(u, v, z)T 2 D(A(0)).
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By restricting ourselves to v = 0 and z = 0, we obtain

0 =

Z

⌦
uxfx dx, 8(u, 0, 0)T 2 D(A(0)).

Since D(⌦) is dense in H
1
0 (⌦) (equipped with the inner product h·, ·iH1

0 (⌦
), we

deduce that f = 0.
We consequently

(23) D(A(0) is dense in H.

Secondly, we notice that

(24)
k�kt
k�ks

 e
c

2⌧0
|t�s|

, 8t, s 2 [0, T ],

where � = (u, v, z)T and c is a positive constant and k · k is the norm associated
the inner product (22). For all t, s 2 [0, T ], we have

k�k2
t
� k�k2

s
e

c
⌧0

|t�s| =
⇣
1� e

c
2⌧0

|t�s|

⌘⇣
kuxk

2
L2(⌦) + kvk

2
L2(⌦)

⌘

+
⇣
⇠(t)⌧(t)� ⇠(s)⌧(s)e

c
⌧0

|t�s|

⌘Z

⌦

Z 1

0
z
2(x, ⇢, t) d⇢ dx.

It is clear that 1 � e
c
⌧0

|t�s|
 0. Now we will prove ⇠(t)⌧(t) � ⇠(s)⌧(s)e

c
⌧0

|t�s|
 0

for some c > 0. To do this , we have

⌧(t) = ⌧(s) + ⌧
0(r)(t� s),

where r 2]s, t[.
Hence ⇠ is a non increasing function and ⇠ > 0, we get

⇠(t)⌧(t)  ⇠(s)⌧(s) + ⇠(s)⌧ 0(r)(t� s),

which implies
⇠(t)⌧(t)

⇠(s)⌧(s)
 1 +

|⌧
0(r)|

⌧(s)
|t� s|.

Using (5) and ⌧
0 is bounded, we deduce that

⇠(t)⌧(t)

⇠(s)⌧(s)
 1 +

c

⌧0
|t� s|  e

c
⌧0

|t�s|
,

which proves (24) and therefore (iii) follows.
Now we calculate hA(t)U,Uit for a fixed t. Take U = (u, v, z)T 2 D(A(t)). Then

hA(t)U,Uit =

Z

⌦
vxux dx+

Z

⌦
(uxx � µ1(t)v � µ2(t)z(·, 1)) v dx

� ⇠(t)

Z

⌦

Z 1

0
(1� ⌧

0(t)⇢) z⇢(x, ⇢)z(x, ⇢) d⇢ dx.

Integrating by parts, we obtain

hA(t)U,Uit =� µ1(t)kvk
2
L2(⌦) � µ2(t)

Z

⌦
z(·, 1)v dx

�

Z

⌦

Z 1

0
(1� ⌧

0(t)⇢)
@

@⇢
z
2(x, ⇢) d⇢ dx.

Since

(1� ⌧
0(t)⇢)

@

@⇢
z
2(x, ⇢) =

@

@⇢

�
(1� ⌧

0(t)⇢) z2(x, ⇢)
�
+ ⌧

0(t)z2(x, ⇢),
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we have
Z 1

0
(1� ⌧

0(t)⇢)
@

@⇢
z
2(x, ⇢) d⇢ = (1� ⌧

0(t)) z2(x, 1)� z
2(x, 0) + ⌧

0(t)

Z 1

0
z
2(x, ⇢) d⇢.

So we get

hA(t)U,Uit =� µ1(t)kvk
2
L2(⌦) � µ2(t)

Z

⌦
z(x, 1)v dx+

⇠(t)

2
kz(x, 0)k2

L2(⌦)

�
⇠(t) (1� ⌧

0(t))

2
kz(x, 1)k2

L2(⌦) �
⇠(t)⌧ 0(t)

2

Z

⌦

Z 1

0
z
2(x, ⇢) d⇢ dx.

Therefore, from (16) and (17), we deduce

hA(t)U,Uit  �µ1(t)

✓
1�

⇠̄

2
�

�

2
p
1� d

◆
kvk

2
L2(⌦)

� µ1(t)

✓
⇠̄(1� ⌧

0(t))

2
�

�
p
1� d

2

◆
kz(x, 1, t)k2

L2(⌦)

+
⇠(t)|⌧ 0(t)|

2⌧(t)
⌧(t)

Z

⌦

Z 1

0
z
2(x, ⇢) d⇢ dx.

Then, we have

hA(t)U,Uit � µ1(t)

✓
1�

⇠̄

2
�

�

2
p
1� d

◆
kvk

2
L2(⌦)

� µ1(t)

✓
⇠̄(1� ⌧

0(t))

2
�

�
p
1� d

2

◆
kz(x, 1, t)k2

L2(⌦)

+ (t)hU,Uit,

where

(t) =

p
1 + ⌧ 0(t)2

2⌧(t)
.

From the (13), we obtain

(25) hA(t)U,Uit � (t)hU,Uit  0,

which means that the operator Ã = A(t)� (t)I is dissipative.

Moreover, 0(t) = ⌧
0(t)⌧ 00(t)

2⌧(t)
p

1+⌧ 0(t)2
�

⌧
0(t)

p
1+⌧ 0(t)2

2⌧(t)2 is bounded on [0, T ] for all T > 0

(by (5) and (12)) and we have

d

dt
A(t)U =

✓
0, 0,

⌧
00(t)⌧(t)⇢� ⌧

0(t)(⌧ 0(t)⇢� 1)

⌧(t)2
z⇢

◆T

,

with ⌧
00(t)⌧(t)⇢�⌧

0(t)(⌧ 0(t)⇢�1)
⌧(t)2 bounded on [0, T ] by (5) and (12). Thus

(26)
d

dt
Ã(t) 2 L

1

⇤
([0, T ], B(D(A(0)),H)),

the space of equivalence classes of essentially bounded, strongly measurable func-
tions from [0, T ] into B(D(A(0)),H).

Now, we will show that �I�A(t) is surjective for fixed t > 0 and � > 0. For this
purpose, let F = (f1, f2, f3)T 2 H, we seek U = (u, v, z)T 2 D(A(t)) solution of

(�I �A(t))U = F,
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that is verifying following system of equations
8
<

:

�u� v = f1,

�v � uxx + µ1(t)v � µ2(t)z(·, 1) = f2,

�z + 1�⌧
0(t)⇢

⌧(t) z⇢ = f3.

(27)

Suppose that we have found u with the appropriated regularity. Then

(28) v = �u� f1.

It is clear that v 2 H
1
0 (⌦). Furthermore, by (27) we can find z. From (20), we have

(29) z(x, 0) = v(x), for x 2 ⌦.

Following the same approach as in [22], we obtain, by using equation for z in (27),

z(x, ⇢) = v(x)e�#(⇢,t) + ⌧(t)e�#(⇢,t)

Z
⇢

0
f3(x, s)e

#(s,t)
ds,

if ⌧ 0(t) = 0, where #(`, t) = �`⌧(t), and

z(x, ⇢) = v(x)e⇣(⇢,t) + e
⇣(⇢,t)

Z
⇢

0

⌧(t)f3(x, s)

1� s⌧ 0(s)
e
�⇣(s,t)

ds,

otherwise, where ⇣(`, t) = �
⌧(t)
⌧ 0(t) ln(1� `⌧

0(t)).

From (28), we obtain

(30) z(x, ⇢) = �u(x)e�#(⇢,t)
� f1(x, ⇢)e

�#(⇢,t) + ⌧(t)e�#(⇢,t)

Z
⇢

0
f3(x, s)e

#(s,t)
ds,

if ⌧ 0(t) = 0, and

(31) z(x, ⇢) = �u(x)e⇣(⇢,t) � f1(x, ⇢)e
⇣(⇢,t) + e

⇣(⇢,t)

Z
⇢

0

⌧(t)f3(x, s)

1� s⌧ 0(s)
e
�⇣(s,t)

ds,

otherwise.
In particular, if ⌧ 0(t) = 0 and from (30), we have

(32) z(x, 1) = �u(x)e�#(1,t)
� f1(x, 1)e

�#(1,t) + ⌧(t)e�#(1,t)

Z 1

0
f3(x, s)e

#(s,t)
ds,

and if ⌧ 0(t) 6= 0 and from (31), we have

(33) z(x, 1) = �u(x)e⇣(1,t) � f1(x, 1)e
⇣(1,t) + e

⇣(1,t)

Z 1

0

⌧(t)f3(x, s)

1� s⌧ 0(s)
e
�⇣(s,t)

ds.

By using (27) and (28), the function u satisfies

(34) �
2
u� uxx + µ1(t)v + µ2(t)z(·, 1) = f2 + �f1.

Solving the equation (34) is equivalent to finding u 2 H
2(⌦) \H

1
0 (⌦) such that

(35)

Z

⌦

�
�
2
u⌘ + ux⌘x + µ1(t)v⌘ + µ2(t)z(·, 1)⌘

�
dx =

Z

⌦
(f2 + �f1)⌘ dx,

for all ⌘ 2 H
1
0 (⌦).

Consequently, the equation (35) is equivalent to the problem

(36) ⌥(u, ⌘) = L(⌘),

where the bilinear form
⌥ : H1

0 (⌦)⇥H
1
0 (⌦) ! R

and the linear form
L : H1

0 (⌦) ! R



214 VANESSA BARROS, CARLOS NONATO AND CARLOS RAPOSO

are defined by

⌥(u, ⌘) =

Z

⌦

�
�
2
u⌘ + ux⌘x

�
dx+

Z

⌦
�u (µ1(t) + µ2(t)N1) ⌘ dx

and

L(⌘) =

Z

⌦
(µ1(t)f1⌘ + µ2(t)N2) ⌘ dx+

Z

⌦
(f2 + �f1)⌘ dx,

where

N1 =

⇢
e
�#(1,t)

, if ⌧
0(t) = 0,

e
⇣(1,t)

, if ⌧
0(t) 6= 0

and

N2 =

(
�f1(x, 1)e�#(1,t) + ⌧(t)e�#(1,t)

R 1
0 f3(x, s)e#(s,t) ds, if ⌧

0(t) = 0,

�f1(x, 1)ezeta(1,t) + e
zeta(1,t)

R 1
0

⌧(t)f3(x,s)
1�s⌧ 0(t) e

�⇣(s,t)
ds, if ⌧

0(t) 6= 0.

It is easy to verify that ⌥ is continuous and coercive, and L is continuous. So
applying the Lax-Milgram theorem, we deduce that for all ⌘ 2 H

1
0 (⌦) the problem

(36) admits a unique solution

u 2 H
1
0 (⌦).

Applying the classical elliptic regularity, it follows from (35) that

u 2 H
2(⌦).

Therefore, the operator �I � A(t) is surjective for any � > 0 and t > 0. Again as
(t) > 0, this prove that

(37) �I � Ã(t) = (�+ (t)) I �A(t) is surjective,

for any � > 0 and t > 0.

Then, (24), (25) and (37) imply that the family Ã =
n
Ã(t)/t 2 [0, T ]

o
is a stable

family of generators in H with stability constants independent of t, by Proposition
1.1 from [14]. Therefore, the assumptions (i)� (iv) of Theorem 3.1 are verified by
(21), (24), (25), (26), (37) and (23), and thus, the problem

(38)

⇢
Ũt = Ã(t)Ũ ,

Ũ(0) = U0 = (u0, u1, f0(·,�, ⌧(0)))T

has a unique solution Ũ 2 C ([0,+1[, D(A(0)))\C1 ([0,+1[,H) for U0 2 D(A(0)).
The requested solution of (18) is then given by

U(t) = e

R t
0 (s) ds

Ũ(t)

because

Ut(t) = (t)e
R t
0 (s) ds

Ũ(t) + e

R t
0 (s) ds

Ũt(t)

= e

R t
0 (s) ds

⇣
(t) + Ã(t)

⌘
Ũ(t)

= A(t)e
R t
0 (s) ds

Ũ(t)

= A(t)U(t),

which concludes the proof.
The existence and uniqueness are obtained by the following result.
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Theorem 3.2 (Global solution). For any initial datum U0 2 H there exists a

unique solution U satisfying

U 2 C([0,+1[,H)

for problem (18).
Moreover, if U0 2 D(A(0)), then

U 2 C([0,+1[, D(A(0))) \ C
1([0,+1[,H).

Proof. A general theory for equations of type (18) has been developed using semi-
group theory [14], [15] and [26]. The simplest way to prove existence and uniqueness
results in to show that the triplet {(A,H, Y )}, with A = {A(t)/t 2 [0, T ]}, for some
fixed T > 0 and Y = A(0), forms a CD-systems (or constant domain system, see
[14] and [15]). More precisely, the following theorem gives the existence and unique-
ness results and is proved in Theorem 1.9 of [14] (see also Theorem 2.13 of [15] or
[1]). ⇤

4. Asymptotic behavior

In this section we shall investigate the asymptotic behavior of problem (1). The
stability result will be obtained using Lemma 2.2.

Theorem 4.1 (Stability Result). Let (u0, u1, f0(·,�, ⌧(0))) 2 H
1
0 (⌦) ⇥ L

2(⌦) ⇥
L
2(⌦⇥]0, 1[). Assume that the hypotheses (H1), (H2) and (5)-(7) hold. Then prob-

lem (1) admits a unique solution

u 2 C([0,+1[, H1
0 (⌦)) \ C

1([0,+1[, L2(⌦)),

z 2 C([0,+1[, L2(⌦)⇥]0, 1[).

Proof. From now on, we denote by c various positive constants which may be dif-
ferent at di↵erent occurrences.

Given 0  S < T < 1 we start by multiplying the first equation of (9) by uE
q

and then integrating over (S, T )⇥ ⌦, we obtain
Z

T

S

E
q

Z

⌦
u (utt � uxx + µ1(t)ut + µ2(t)z(x, 1, t)) dx dt = 0.

Notice that
uttu = (utu)t � u

2
t
,

using integration by parts and the boundary conditions we know that

0 =


E

q(t)

Z

⌦
uut dx

�T

S

�

Z
T

S

qE
q�1(t)E0(t)

Z

⌦
uut dx dt

�

Z
T

S

E
q(t)kutk

2
L2(⌦) dt+

Z
T

S

E
q(t)kuxk

2
L2(⌦) dt

+

Z
T

S

E
q(t)

Z

⌦
µ1(t)uut dx dt+

Z
T

S

E
q(t)

Z

⌦
µ2(t)uz(x, 1, t) dx dt.(39)

Similarly, we multiply the second equation of (9) by E
q
⇠(t)e�2⇢⌧(t)

z(x, ⇢, t) and
then integrate over ⌦⇥ (0, 1)⇥ (S, T ) to see that

0 =

Z
T

S

Z

⌦

Z 1

0
E

q(t)⇠(t)e�2⇢⌧(t)
z (⌧(t)zt + (1� ⇢⌧

0(t)) z⇢) d⇢ dx dt
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=
1

2

Z

⌦

Z 1

0

Z
T

S

E
q(t)⇠(t)e�2⇢⌧(t) @

@t
z
2
dt d⇢ dx

+
1

2

Z
T

S

E
q(t)⇠(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t) (1� ⇢⌧

0(t))
@

@⇢
z
2
d⇢ dx dt.

Using integration by parts and the boundary conditions we know that

0 =


⇠(t)⌧(t)

2
E

q(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx

�T

S

�
1

2

Z
T

S

qE
q�1(t)E0(t)⇠(t)⌧(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx dt

�
1

2

Z
T

S

qE
q(t)⇠0(t)⌧(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx dt

+
1

2

Z
T

S

E
q(t)⇠(t)

Z

⌦

h
e
�2⇢⌧(t) (1� ⌧

0(t)) z2(x, 1, t)� z
2(x, 0, t)

i
dx dt

+

Z
T

S

E
q(t)⇠(t)⌧(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx dt.(40)

Since µ1 is a non-increasing function of class C1(R), its derivatives is non-positive,
which implies that ⇠0(t)  0. This result this

(41)

Z
T

S

qE
q(t)⇠0(t)⌧(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx dt  0.

Moreover, as

(42) �
1

2

Z
T

S

E
q(t)⇠(t)

Z

⌦
e
�2⇢⌧(t) (1� ⌧

0(t)) z2(x, 1, t) dx dt  0,

then, from (40), (41) and (42), we have that
Z

T

S

E
q(t)⇠(t)⌧(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx dt

 �


⇠(t)⌧(t)

2
E

q(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx

�T

S

+
1

2

Z
T

S

qE
q�1(t)E0(t)⇠(t)⌧(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx dt

�
1

2

Z
T

S

E
q(t)⇠(t)

Z

⌦
z
2(x, 0, t) dx dt.(43)

Using the definition of E, (39) and (43), we get

�0

Z
T

S

E
q+1

dt �


E

q(t)

Z

⌦
uut dx

�T

S

�


⇠(t)⌧(t)

2
E

q(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx

�T

S

+ q

Z
T

S

E
q�1(t)E0(t)

Z

⌦
uut dx dt

+ q

Z
T

S

⇠(t)⌧(t)

2
E

q�1(t)E0(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx dt
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+ 2

Z
T

S

E
q(t)kutk

2
L2(⌦) dt�

Z
T

S

E
q(t)

Z

⌦
µ1(t)uut dx dt

�

Z
T

S

E
q(t)

Z

⌦
µ2(t)uz(x, 1, t) dx dt

+
1

2

Z
T

S

⇠(t)Eq(t)e�2⇢⌧(t)

Z

⌦
z
2(x, 0, t) dx dt,(44)

where �0 = 2min{1, e�2⌧1}.
Using the Young and Sobolev-Poincaré inequalities and Lemma 2.3, we find that

�


E

q(t)

Z

⌦
uut dx

�T

S

 E
q(S)

Z

⌦
u(x, S)ut(x, S) dx

� E
q(T )

Z

⌦
u(x, T )ut(x, T ) dx

 cE
q+1(S).

Now, we known that

�

"
⇠(t)⌧(t)

2
E

q(t)

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx

#T

S


⇠(S)⌧(S)

2
E

q(S)

Z

⌦

Z 1

0
e
�2⇢⌧(S)

z
2(x, ⇢, S) d⇢ dx

 cE
q(S)⇠(S)⌧(S)

Z

⌦

Z 1

0
z
2(x, ⇢, S) d⇢ dx

 cE
q+1(S).

By (13), we have
Z

T

S

E
q�1(t)E0(t)

Z

⌦
uut dx dt  c

Z
T

S

(�E
0(t))Eq(t) dt  cE

q+1(S).

Similarly,
Z

T

S

E
q�1(t)E0(t)

⇠(t)⌧(t)

2

Z

⌦

Z 1

0
e
�2⇢⌧(t)

z
2
d⇢ dx dt  cE

q+1(S).

From Lemma 2.4, we deduce that
Z

T

S

E
q(t)kutk

2
L2(⌦) dt  �c

Z
T

S

E
q(t)E0(t) dt  cE

q+1(S).

Now, we get that
�����

Z
T

S

E
q(t)

Z

⌦
µ1(t)uut dx dt

�����  µ1(0)

�����

Z
T

S

E
q(t)

Z

⌦
uut dx dt

�����

 c("1)

Z
T

S

E
q(t)

Z

⌦
u
2
t
dx dt+ "1

Z
T

S

E
q(t)

Z

⌦
u
2
x
dx dt

 c("1)

Z
T

S

E
q(t)(�E

0(t)) dt+ "1

Z
T

S

E
q(t)E(t) dt

 c("1)E
q+1(S) + "1

Z
T

S

E
q+1(t) dt(45)
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and from (H2) we obtain that
�����

Z
T

S

E
q(t)

Z

⌦
µ2(t)uz(x, 1, t) dx dt

�����  �µ1(0)

�����

Z
T

S

E
q(t)

Z

⌦
'z(x, 1, t) dx dt

�����

 c("2)E
q+1(S) + "2

Z
T

S

E
q+1(t) dt.(46)

Finally,

1

2

Z
T

S

E
q(t)⇠(t)

Z

⌦
z
2(x, 0, t) dx dt 

⇠̄µ1(0)

2

Z
T

S

E
q(t)kutk

2
L2(⌦) dt

 c

Z
T

S

E
q(t)(�E

0(t)) dt  cE
q+1(S).

Choosing "1 and "2 small enough, we deduce from (45) and (46) that
Z

T

S

E
q+1

dt 
1

�
E

q+1(S).

Since E(S)  E(0) for S � 0, we have that
Z

T

S

E
q+1

dt 
1

�
E(0)Eq(S).

We choose q = 0, we conclude from Lemma 2.2 that

E(t)  E(0)e1��t
.

This ends the proof of Theorem 4.1. ⇤
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