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Shortest Distance Between Multiple Orbits
and Generalized Fractal Dimensions

Vanessa Barros and Jérôme Rousseau

Abstract. We consider rapidly mixing dynamical systems and link the
decay of the shortest distance between multiple orbits with the general-
ized fractal dimension. We apply this result to multidimensional expand-
ing maps and extend it to the realm of random dynamical systems. For
random sequences, we obtain a relation between the longest common
substring between multiple sequences and the generalized Rényi entropy.
Applications to Markov chains and Gibbs states are given.

1. Introduction

Generalized fractal dimensions were originally introduced to characterize and
measure the strangeness of chaotic attractors and, more generally, to describe
the fractal structure of invariant sets in dynamical systems [24–26].

Given k > 1, the generalized fractal dimension (also known as Lq or HP
dimensions) of a measure μ is defined (provided the limit exists) by:

Dk(μ) = lim
r→0

log
∫

X
μ (B (x, r))k−1 dμ(x)
(k − 1) log r

.

For the existence of these dimensions, their properties and relations with other
dimensions, one can see, for example, [9,18,39,40].

Since estimation of the generalized dimensions plays an important role
in the description of dynamical systems, different numerical approaches and
procedures have been developed to compute them (see, for example, [3,6,7,11,
14,38] and references within). In particular, we highlight [21] where extreme
value theory (EVT) was used as a tool to estimate the correlation dimension
D2(μ), and [14] for generalized dimensions. For a deeper discussion of EVT
for dynamical systems, we refer the reader to [20].

It is also worth mentioning the connection between generalized dimen-
sions and the recurrence properties of the dynamics. Return time dimensions

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-021-01039-y&domain=pdf
http://orcid.org/0000-0003-3175-1176


V. Barros, J. Rousseau Ann. Henri Poincaré

and generalized fractal dimensions were thoroughly compared in [28,36]. More-
over, they appear in the rate function for the large deviations of the return
time [14,17].

In this communication we study, for a dynamical system (X,T, μ), the
behaviour of the shortest distance between k orbits, i.e. for (x1, . . . , xk) ∈ Xk:

mn(x1, . . . , xk) = min
i1,...,ik=0,...,n−1

(
d(T i1x1, . . . , T

ikxk)
)
, (1)

where d(x1, . . . , xk) = maxi�=j d(xi, xj), and show a relation between this
shortest distance and the generalized fractal dimensions.

Indeed, if the generalized dimension exists, then under some rapid mixing
conditions on the system (X,T, μ), for μ ⊗ · · · ⊗ μ-almost every (x1, . . . , xk) ∈
Xk, we have

lim
n→+∞

log mn(x1, . . . , xk)
− log n

=
k

(k − 1)Dk(μ)
. (2)

In particular, we apply these results to the multidimensional expanding maps
defined by Saussol [45]. Moreover, we also prove an annealed version of (2) for
the shortest distance between k orbits of a random dynamical system.

These results extend and complement those in [10,16] where identity (2)
(and its equivalent for random dynamical systems) was proved for two orbits
(k = 2).

Furthermore, it was shown in [10] that the problem of the shortest dis-
tance between orbits is a generalization of the longest common substring
problem for random sequences, a problem thoroughly investigated in genet-
ics, probability and computer science (see, for example, [49]). More precisely,
for α-mixing systems, they study the behaviour of the length of the longest
common substring between two sequences x and y:

Mn(x, y) = max{m : xi+k = yj+k for k = 1, . . . , m and for some 0 ≤ i, j ≤ n − m},

and generalized the work of Arratia and Waterman [5] where only independent
irreducible and aperiodic Markov chains on a finite alphabet were considered.
More recently, similar results for encoded sequences [16], random sequences in
random environment [43], stationary detrimental process on the integer lattice
[19] and also for the longest matching consecutive subsequence between two
N -ary expansions [34] were obtained.

Following the ideas in [10], we extend here our study to the longest com-
mon substring between multiple sequences (previous results in this direction
were obtained in [32,33]). More precisely, for k sequences x1, . . . , xk, we define
the length of the longest common substring by

Mn(x1, . . . , xk)

= max{m : x1
i1+j = · · · = xk

ik+j for j = 0, . . . ,m − 1 and for some

0 ≤ i1, . . . , ik ≤ n − m}.



Shortest Distance Between Multiple Orbits

and link it to the generalized Rényi entropy (provided that it exists, see, for
example, [1,2,29,35]):

Hk = lim
n→+∞

log
∑

P(Cn)k

−(k − 1)n
,

where the sum is taken over all n-cylinders Cn (see Sect. 4 for a precise defi-
nition).

Thus, we prove that for α-mixing systems with exponential decay (or ψ-
mixing with polynomial decay), if the generalized Rényi entropy exists, then
for P

k-almost every (x1, . . . , xk),

lim
n→+∞

Mn(x1, . . . , xk)
log n

=
k

(k − 1)Hk
.

The paper is organized as follows. Our main results linking the shortest
distance between multiple orbits and the generalized fractal dimensions are
stated in Sect. 2 and proved in Sect. 7. An application of these results for
multidimensional expanding maps is given in Sect. 5. Shortest distance between
multiple observed orbits and random orbits is studied in Sect. 3. In Sect. 4, we
study the longest common substring problem for multiple random sequences
and its relation with the generalized Rényi entropy. These results are proved
in Sect. 6.

2. Shortest Distance Between k Orbits

Let (X, d) be a finite-dimensional metric space and A its Borel σ-algebra. Let
(X,A, μ, T ) be a measure preserving system which means that T : X → X is
a transformation on X and μ is a probability measure on (X,A) such that μ
is invariant by T , i.e. μ(T−1A) = μ(A) for all A ∈ A. We will denote by μk

the product measure μ ⊗ · · · ⊗ μ.
We would like to study the behaviour of the shortest distance between k

orbits:

mn(x1, . . . , xk) = min
i1,...,ik=0,...,n−1

(
d(T i1x1, . . . , T

ikxk)
)

where d(x1, . . . , xk) = maxi�=j d(xi, xj).

Remark 2.1. Other definitions could have been chosen for d(x1, . . . , xk) with-
out altering our results (see, for example, [31,48] and references therein for
examples of generalizations of the usual two-way distance). For example, we
could have used d1(x1, . . . , xk) = minz∈X maxi d(xi, z), or d2(x1, . . . , xk) =√∑

i�=j d(xi, xj)2, but our results would have been the same since d, d1, and
d2 are equivalent.

We will show that the behaviour of mn as n → ∞ is linked with the
generalized fractal dimension. Before stating the first theorem, we recall, for
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k > 1, the definition of the lower and upper generalized fractal dimensions of
μ:

Dk(μ) = lim
r→0

log
∫

X
μ (B (x, r))k−1 dμ(x)
(k − 1) log r

and

Dk(μ) = lim
r→0

log
∫

X
μ (B (x, r))k−1 dμ(x)
(k − 1) log r

.

When the limit exists, we will denote the common value of Dk(μ) and Dk(μ)
by Dk(μ).

Theorem 2.2. Let (X,A, μ, T ) be a measure preserving system such that
Dk(μ) > 0. Then, for μk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

log mn(x1, . . . , xk)
− log n

≤ k

(k − 1)Dk(μ)
.

This general result can be applied to any dynamical system such that
Dk(μ) > 0. Even if the inequality in Theorem 2.2 can be strict (noting, for
example, the trivial case when T is the identity), we will prove that an equality
holds under some rapidly mixing conditions:

(H1) There exists a Banach space C, such that for all ψ, φ ∈ C and for
all n ∈ N

∗, we have
∣
∣
∣
∣

∫

X

ψ.φ ◦ Tn dμ −
∫

X

ψdμ

∫

X

φdμ

∣
∣
∣
∣ ≤ ‖ψ‖C‖φ‖Cθn,

with θn = an (0 ≤ a < 1) and where ‖ · ‖C is the norm in the Banach space C.
(H2) There exist 0 < r0 < 1, c ≥ 0 and ξ ≥ 0 such that for every

p ∈ {1, . . . , k}, for μk−p-almost every xp+1, . . . , xk ∈ X and any 0 < r < r0,
the function ψp : X → R, defined below, belongs to the Banach space C and
verifies

‖ψp‖C ≤ cr−ξ.

Fixed x2, . . . , xk ∈ X, we define

ψ1(x) =
k∏

j=2

1B(xj ,r)(x). (3)

For p > 1, we fix xp+1, . . . , xk ∈ X, and set

ψp(x) = ψ̄(x, xp+1, . . . , xk), where
ψ̄(xp, xp+1, . . . , xk)

=
k∏

l=p+1

1B(xl,r)(xp)
∫

Xp−1

⎡

⎣
p−1∏

j=1

k∏

l=j+1

1B(xj ,r)(xl)

⎤

⎦dμp−1(x1, . . . , xp−1).

(4)

This condition imposes some regularity (with respect to the Banach space
C) on the indicator functions of intersections of balls and on the measure.
More precisely, to satisfy (H2) the measure cannot change drastically around
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these intersections. When the Banach space C is the space of Hölder functions
Hα(X,R), we will replace our assumption (H2) by an assumption easier to
interpret in Theorem 2.7.

We will also need some topological information on the space X.

Definition 2.3. A separable metric space (X, d) is called tight if there exist
r0 > 0 and N0 ∈ N, such that for any 0 < r < r0 and any x ∈ X one can cover
B(x, 2r) by at most N0 balls of radius r.

We emphasize that any subset of Rn with the Euclidian metric is tight,
any subset of a Riemannian manifold of bounded curvature is tight and that
if (X, d) admits a doubling measure then it is tight [27].

Now we can state our main result.

Theorem 2.4. Let (X,A, μ, T ) be a measure preserving system, such that (X, d)
is tight, satisfying (H1) and (H2) and such that Dk(μ) exists and is strictly
positive. Then, for μk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

log mn(x1, . . . , xk)
− log n

=
k

(k − 1)Dk(μ)
.

Now, we will apply this result to a short list of simple examples. Later,
in Sect. 5, we use this theorem for a more complex family of examples (multi-
dimensional piecewise expanding maps).

Denote by Leb the Lebesgue measure.

Example 2.5. Theorem 2.4 can be applied to the following systems:
(1) For m ∈ {2, 3, . . . }, let T : [0, 1] → [0, 1] be such that x 
→ mx mod 1

and μ = Leb.
(2) Let T : (0, 1] → (0, 1] be such that T (x) = 2n(x − 2−n) for x ∈

(2−n, 2−n+1] and μ = Leb.
(3) (β-transformations) For β > 1, let T : [0, 1] → [0, 1] be such that x 
→ βx

mod 1 and μ be the Parry measure (see [37]), which is an absolutely
continuous probability measure with density ρ satisfying 1 − 1

β ≤ ρ(x) ≤
(1 − 1

β )−1 for all x ∈ [0, 1].
(4) (Gauss map) Let T : (0, 1] → (0, 1] be such that T (x) =

{
1
x

}
and dμ =

1
log 2

dx
1+x .

In these examples, it is easy to see that Dk(μ) = 1. Moreover, (H1) and (H2)
are satisfied with the Banach space C = BV, the space of functions of bounded
variation (see, for example, [23] Sect. 4.1 and [30,41,42]).

One can observe that Theorem 2.4 is an immediate consequence of The-
orem 2.2 and the next theorem.

Theorem 2.6. Let (X,A, μ, T ) be a measure preserving system, such that
Dk(μ) > 0 and such that (X, d) is tight, satisfying (H1) and (H2). Then,
for μk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

log mn(x1, . . . , xk)
− log n

≥ k

(k − 1)Dk(μ)
.
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When the Banach space C is the space of Hölder functions Hα(X,R), we
can adapt our proof and (H2) can be replaced by the following condition:

(HA) There exist r0 > 0, ξ ≥ 0 and β > 0 such that for μ-almost every
x ∈ X and any r0 > r > ρ > 0,

μ(B(x, r + ρ)\B(x, r − ρ)) ≤ r−ξρβ .

This assumption is satisfied, for example, if the measure is Lebesgue or
absolutely continuous with respect to Lebesgue with a bounded density.

Theorem 2.7. Let (X,A, μ, T ) be a measure preserving system, such that
Dk(μ) > 0 and such that (X, d) is tight, satisfying (H1) with C = Hα(X,R)
and (HA). Then, for μk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

log mn(x1, . . . , xk)
− log n

≥ k

(k − 1)Dk(μ)
.

For example, one can apply this theorem to expanding maps of the inter-
val with a Gibbs measure associated to a Hölder potential (see, for example,
[46]) and C2 endomorphism (of a d-dimensional compact Riemannian man-
ifold) admitting a Young tower with exponential tail (see [22, Sect. 6] and
[15]).

3. Observed Orbits and Random Dynamical Systems

In this section, we extend our analysis to the study of observation of orbits.
Indeed, considering observations of systems (for example, temperature or pres-
sure while studying climate) could be more significant than considering the
whole system. From a more theoretical point of view, we will explain in Sect. 3.1
how the study of observed orbits allows us to study random dynamical systems.

Let (Y, d) be a metric space and for any y1, . . . , yk ∈ Y , we define
d(y1, . . . , yk) = maxi�=j d(yi, yj). Let f : X → Y be a measurable function
(called the observation). We denote by f∗μ the pushforward measure, defined
by f∗μ(A) = μ(f−1(A)) for measurable subsets A ⊂ Y .

We would like to study the behaviour of the shortest distance between k
observed orbits:

mf
n(x1, . . . , xk) = min

i1,...,ik=0,...,n−1

(
d(f(T i1x1), . . . , f(T ikxk))

)

Theorem 3.1. Let (X,A, μ, T ) be a measure preserving system such that
Dk(f∗μ) > 0. Then, for μk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

log mf
n(x1, . . . , xk)
− log n

≤ k

(k − 1)Dk(f∗μ)
.

We will assume that f is Lipschitz and as in Sect. 2, we prove that the
equality holds under some rapidly mixing conditions:
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(H1′) For all ψ, φ ∈ Hα(Y,R) and for all n ∈ N
∗, we have

∣
∣
∣
∣

∫

X

ψ(f(x)).φ(f(Tnx)) dμ(x) −
∫

X

ψ(f(x))dμ(x)
∫

X

φ(f(x))dμ(x)
∣
∣
∣
∣

≤ ‖ψ ◦ f‖Hα‖φ ◦ f‖Hαθn,

with θn = an (0 ≤ a < 1).
For simplicity, we only treat the case when the mixing property is satisfied

for Hölder observables. However, we observe that one can adapt (H1) and (H2)
to this setting to work with other Banach spaces.

Now we can state our version of Theorem 2.7 for observed orbits.

Theorem 3.2. Let (X,A, μ, T ) be a measure preserving system and f a Lip-
schitz observation, such that Dk(f∗μ) > 0 and such that (Y, d) is tight, sat-
isfying (H1’) and such that f∗μ satisfies (HA). Then, for μk-almost every
(x1, . . . , xk) ∈ Xk,

lim
n→+∞

log mf
n(x1, . . . , xk)
− log n

≥ k

(k − 1)Dk(f∗μ)
.

Moreover, if Dk(f∗μ) exists, then for μk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

log mf
n(x1, . . . , xk)
− log n

=
k

(k − 1)Dk(f∗μ)
.

3.1. Shortest Distance Between Multiple Random Orbits

In this subsection, we will use the previous results to study the shortest dis-
tance between multiple orbits of a random dynamical system.

Let (X, d) be a tight metric space and let (Ω, θ,P) be a probability mea-
sure preserving system, where Ω is a metric space and B(Ω) its Borelian
σ-algebra.

Definition 3.3. A random dynamical system T = (Tω)ω∈Ω on X over
(Ω,B(Ω),P, θ) is generated by maps Tω such that (ω, x) 
→ Tω(x) is mea-
surable and satisfies:

T 0
ω = Id for all ω ∈ Ω,

Tn
ω = Tθn−1(ω) ◦ · · · ◦ Tθ(ω) ◦ Tω for all n ≥ 1.

The map S : Ω × X → Ω × X defined by S(ω, x) = (θ(ω), Tω(x)) is the
dynamics of the random dynamical systems generated by T and is called skew
product.

A probability measure μ is said to be an invariant measure for the random
dynamical system T if it satisfies

1. μ is S-invariant
2. π∗μ = P

where π : Ω × X → Ω is the canonical projection.
Let (μω)ω denote the decomposition of μ on X, that is, dμ(ω, x) =

dμω(x)dP(ω). We denote by ν =
∫

μωdP the marginal of ν on X.
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For (ω1, x1), . . . , (ωk, xk), we define the shortest distance between k ran-
dom orbits by

mω1,...,ωk
n (x1, . . . , xk) = min

i1,...,ik=0,...,n−1

(
d
(
T i1

ω1
(x1), . . . , T ik

ωk
(xk)

))
.

Remark 3.4. We observe that the technique developed here only allows us to
obtain annealed results. Another object worth studying would be the quenched
shortest distance

mω
n(x1, . . . , xk) = min

i1,...,ik=0,...,n−1

(
d
(
T i1

ω (x1), . . . , T ik
ω (xk)

))
.

In this direction, the only known results are for 2 orbits and when the system
is a random subshift of finite type [43].

As in the deterministic case, we will assume an exponential decay of
correlations for the random dynamical system:

(H1R) (Annealed decay of correlations) For every n ∈ N
∗, and every ψ,

φ ∈ Hα(X,R),
∣
∣
∣
∣

∫

Ω×X

ψ(Tn
ω (x))φ(x) dμ(ω, x) −

∫

Ω×X

ψ dμ

∫

Ω×X

φ dμ

∣
∣
∣
∣ ≤ ‖ψ‖Hα‖φ‖Hαθn,

with θn = an (0 ≤ a < 1).

Theorem 3.5. Let T be a random dynamical system on X over (Ω,B(Ω),P, θ)
with an invariant measure μ such that Dk(ν) > 0. Then, for μk-almost every
(ω1, x1, . . . , ωk, xk) ∈ (Ω × X)k,

lim
n→∞

log mω1,...,ωk
n (x1, . . . , xk)

− log n
≤ k

(k − 1)Dk(ν)
.

Moreover, if the random dynamical system satisfies assumptions (H1R) and ν
satisfies (HA), then

lim
n→∞

log mω1,...,ωk
n (x1, . . . , xk)

− log n
≥ k

(k − 1)Dk(ν)
,

and if Dk(ν) exists, then

lim
n→∞

log mω1,...,ωk
n (x1, . . . , xk)

− log n
=

k

(k − 1)Dk(ν)
.

Proof. Following the ideas in [44], it is enough to apply Theorems 3.1 and
3.2 for the dynamical system (Ω × X,B(Ω × X), μ, S) with the observation f
defined by

f : Ω × X → X

(ω, x) 
→ x.

�
We now apply the above result to some simple non-i.i.d. random dynam-

ical system, and we observe that, as in [16], Theorem 3.5 could also be applied
to randomly perturbed dynamical systems and random hyperbolic total auto-
morphisms.
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Example 3.6. (Non-i.i.d. random expanding maps) Consider the two following
linear maps

T1 : X → X and T2 : X → X

x 
→ 2x x 
→ 3x,

where X is the one-dimensional torus T
1. It is easy to see that T1 and T2

preserve the Lebesgue measure(Leb).
The following skew product gives the dynamics of the random dynamical

system:

S : Ω × X → Ω × X

(ω, x) 
→ (θ(ω), Tω(x)),

with Ω = [0, 1], Tω = T1 if ω ∈ [0, 2/5) and Tω = T2 if ω ∈ [2/5, 1] where ω is
the following piecewise linear map:

θ(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

2ω if ω ∈ [0, 1/5)
3ω − 1/5 if ω ∈ [1/5, 2/5)
2ω − 4/5 if ω ∈ [2/5, 3/5)
3ω/2 − 1/2 if ω ∈ [3/5, 1].

The associated skew product S is Leb⊗Leb-invariant. It is easy to check
that Lebesgue measure satisfies (HA). Moreover, by [8] the skew product S
has an exponential decay of correlations. Since in this example ν = Leb,
we have Dk(ν) = 1 and Theorem 3.5 implies that for Leb2k-almost every
(ω1, x1, . . . , ωk, xk) ∈ ([0, 1] × T

1)k,

lim
n→∞

log mω1,...,ωk
n (x1, . . . , xk)

− log n
=

k

k − 1
.

4. Longest Common Substring Between k Random Sequences

It was shown in [10] that studying the shortest distance between orbits for a
symbolic dynamical system coincides with studying the length of the longest
common substring between sequences.

Thus, we will consider the symbolic dynamical systems (Ω,P, σ), where
Ω = AN for some alphabet A, σ is the (left) shift on Ω and P is a σ-invariant
probability measure. For k sequences x1, . . . , xk ∈ Ω, we are interested in the
behaviour of

Mn(x1, . . . , xk)

= max{m : x1
i1+j = · · · = xk

ik+j for j = 0, . . . ,m − 1 and for some

0 ≤ i1, . . . , ik ≤ n − m}.

We will show that the behaviour of Mn is linked with the generalized Rényi
entropy of the system.

For y ∈ Ω we denote by Cn(y) = {z ∈ Ω : zi = yi for all 0 ≤ i ≤ n − 1}
the n-cylinder containing y. Set Fn

0 as the sigma-algebra over Ω generated by
all n-cylinders.
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For k > 1, we recall the definition of the lower and upper generalized
Rényi entropy:

Hk(P) = lim
n→+∞

log
∑

P(Cn)k

−(k − 1)n
and Hk(P) = lim

n→+∞
log

∑
P(Cn)k

−(k − 1)n
,

where the notation
∑

P(Cn)k means
∑

y∈AnP(Cn(y))k. When the limit exists,
we will denote it by Hk(P).

We say that a system (Ω,P, σ) is α-mixing if there exists a function
α : N → R satisfying α(g) → 0 when g → +∞ and such that for all m,n ∈ N,
A ∈ Fn

0 and B ∈ Fm
0 :
∣
∣P(A ∩ σ−g−nB) − P(A)P(B)

∣
∣ ≤ α(g).

It is said to be α-mixing with an exponential decay if the function α(g) decreases
exponentially fast to 0.

We say that our system is ψ-mixing if there exists a function ψ : N → R

satisfying ψ(g) → 0 when g → +∞ and such that for all m,n ∈ N, A ∈ Fn
0

and B ∈ Fm
0 :

∣
∣P(A ∩ σ−g−nB) − P(A)P(B)

∣
∣ ≤ ψ(g)P(A)P(B).

Now we are ready to state our next result.

Theorem 4.1. If Hk(P) > 0, then for P
k-almost every (x1, . . . , xk) ∈ Ωk,

lim
n→+∞

Mn(x1, . . . , xk)
log n

≤ k

(k − 1)Hk(P)
. (5)

Moreover, if the system is α-mixing with an exponential decay or if it is
ψ-mixing with ψ(g) = g−a for some a > 0 then, for P

k-almost every
(x1, . . . , xk) ∈ Ωk,

lim
n→+∞

Mn(x1, . . . , xk)
log n

≥ k

(k − 1)Hk(P)
. (6)

Therefore, if the generalized Rényi entropy exists, then for P
k-almost every

(x1, . . . , xk) ∈ Ωk,

lim
n→+∞

Mn(x1, . . . , xk)
log n

=
k

(k − 1)Hk(P)
.

This theorem can be applied, for example, to Markov chains and Gibbs
states:

Example 4.2. (Markov chains) If (Ω,P, σ) is an irreducible and aperiodic
Markov chain on a finite alphabet A, then it is ψ-mixing with an exponen-
tial decay (see, for example, [13]). If we denote by P the associated stochastic
matrix (with entries Pij), then the matrix P (k) whose entries are Pij(k) = P k

ij

has, by the Perron–Frobenius theorem, a single largest eigenvalue λk. More-
over, the generalized Rényi entropy exists and Hk(P) = − log λk/(k − 1) [29].
Thus, for P

k-almost every (x1, . . . , xk) ∈ Ωk,

lim
n→+∞

Mn(x1, . . . , xk)
log n

=
k

− log λk
.
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Example 4.3. (Gibbs states) Let P be a Gibbs state of a Hölder-continuous
potential φ. Then, the system is ψ-mixing with an exponential decay [12,
47]. Moreover, the generalized Rényi entropy exists and Hk(P) = (1/(k −
1)) (kP (φ) − P (kφ)) where P (φ) is the pressure of the potential φ [29]. Thus,
for P

k-almost every (x1, . . . , xk) ∈ Ωk,

lim
n→+∞

Mn(x1, . . . , xk)
log n

=
k

kP (φ) − P (kφ)
.

5. Multidimensional Piecewise Expanding Maps

In this section, we apply Theorem 2.4 to a family of maps defined by Saussol
[45]: multidimensional piecewise uniformly expanding maps. It was observed
in [4] that these maps generalize Markov maps which also contain one-
dimensional piecewise uniformly expanding maps.

Let N ≥ 1 be an integer. We will work in the Euclidean space R
N . We

denote by Bε(x) the ball with centre x and radius ε. For a set E ⊂ R
N , we

write

Bε(E) := {y ∈ R
N : d(y,E) ≤ ε}.

Definition 5.1 (Multidimensional piecewise expanding systems). Let X be a
compact subset of RN with X◦ = X and T : X → X. The system (X,T ) is
a multidimensional piecewise expanding system if there exists a family of at
most countably many disjoint open sets Ui ⊂ X and Vi such that Ui ⊂ Vi and
maps Ti : Vi → R

N satisfying for some 0 < α ≤ 1, for some small enough
ε0 > 0, and for all i:

(1) T |Ui
= Ti|Ui

and Bε0(TUi) ⊂ Ti(Vi);
(2) Ti ∈ C1(Vi), Ti is injective and T−1

i ∈ C1(TiVi). Moreover, there exists a
constant c, such that for all ε ≤ ε0, z ∈ TiVi and x, y ∈ Bε(z) ∩ TiVi we
have

|det DxT−1
i − det DyT−1

i | ≤ cεα|det DzT
−1
i |;

(3) Leb(X \
⋃

i Ui) = 0;
(4) there exists s = s(T ) < 1 such that for all u, v ∈ TVi with d(u, v) ≤ ε0

we have d(T−1
i u, T−1

i v) ≤ sd(u, v);
(5) let G(ε, ε0) := supx G(x, ε, ε0) where

G(x, ε, ε0) =
∑

i

Leb(T−1
i Bε(∂TUi) ∩ B(1−s)ε0(x))

m(B(1−s)ε0(x))
,

then the number η = η(δ) := sα +2 supε≤δ
G(ε)
εα δα satisfies supδ≤ε0 η(δ) <

1.

We will prove that the multidimensional piecewise expanding systems
satisfy the conditions of Theorem 2.4.
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Proposition 5.2. Let (X,T ) be a topologically mixing multidimensional piece-
wise expanding map and μ be its absolutely continuous invariant probability
measure. Then, for μk-almost every (x1, . . . , xk) ∈ Xk,

lim
n→+∞

log mn(x1, . . . , xk)
− log n

=
k

(k − 1)N
.

Proof. First of all, we define the Banach space involved in the mixing condi-
tions. Let Γ ⊂ X be a Borel set. We define the oscillation of ϕ ∈ L1(Leb) over
Γ as

osc(ϕ, Γ ) = ess-sup
Γ

(ϕ) − ess-inf
Γ

(ϕ).

Now, given real numbers 0 < α ≤ 1 and 0 < ε0 < 1 consider the following
α-seminorm

|ϕ|α = sup
0<ε≤ε0

ε−α

∫

X

osc(ϕ,Bε(x))dx.

We observe that X 
 x 
→ osc(ϕ,Bε(x)) is a measurable function (see [45])
and

supp(osc(ϕ,Bε(x))) ⊂ Bε(supp ϕ).

Let Vα be the space of L1(Leb)−functions such that |ϕ|α < ∞ endowed
with the norm

‖ϕ‖α = ‖ϕ‖L1(Leb) + |ϕ|α.

Then, (Vα, ‖ · ‖α) is a Banach space which does not depend on the choice of ε0
and Vα ⊂ L∞ (see [45]).

Saussol [45] proved that for a piecewise expanding map T : X −→ X,
where X ⊂ R

N is a compact set, there exists an absolutely continuous invariant
probability measure μ with density h ∈ Vα which enjoys exponential decay of
correlations against L1 observables on Vα. More precisely, for all ψ ∈ Vα,
φ ∈ L1(μ) and n ∈ N

∗, we have
∣
∣
∣
∣

∫

X

ψ.φ ◦ Tn dμ −
∫

X

ψdμ

∫

X

φdμ

∣
∣
∣
∣ ≤ ‖ψ‖α‖φ‖1θn,

with θn = an (0 ≤ a < 1). This means that the system (X,T, μ) satisfies the
condition (H1) with C = Vα.

It remains to show that the system also satisfies the conditions (H2) (with
r0 = ε0). To this end, we need to estimate for each p ∈ {1, · · · , k}, the norm
‖ψp‖α, where the functions ψp were defined in (3) and (4). Since ψp ∈ L1(Leb),
we just need to estimate its α-seminorm.

Since

supp osc(ψp, Bε(·)) ⊂ Bε(X),

we infer that

|ψp|α = sup
0<ε≤ε0

ε−α

∫

Bε(X)

osc(ψp, Bε(x))dx.
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For p = 1 the computation is similar to the one leading to (20) in [10] so
we will only treat the case p ≥ 2.

Let 0 < ε ≤ ε0. First of all, suppose that r ≤ ε. Since the density h
belongs to Vα ⊂ L∞, we have h ≤ c for some constant c > 0. Thus, we observe
that

osc(ψp, Bε(x)) ≤ ess-sup
y∈B(x,ε)∩X

ψp(y)

≤ ess-sup
y∈B(x,ε)∩X

∫

Xp−1

⎡

⎣
p−1∏

j=1

1B(xj ,r)(y)

⎤

⎦dμp−1(x1, . . . , xp−1)

= ess-sup
y∈B(x,ε)∩X

μ(B(y, r))p−1 ≤ Cp−1
0 cp−1εN(p−1),

where C0 denotes the Lebesgue measure of the unit ball in R
N . Now, using

the fact that Bε(X) ⊂ Bε0(X) which is a compact set, we conclude that

|ψp|α ≤ sup
0<ε≤ε0

ε−αCp−1
0 cp−1εN(p−1)Leb(Bε(X))

≤ Cε
N(p−1)−α
0 ,

where C = Cp−1
0 cp−1Leb(Xε0).

For simplicity of notation, from now on we write dμj−i+1(i, j) instead of
dμj−i+1(xi, . . . , xj).

Now suppose r > ε. Observe that y ∈ B(x, ε) implies B(x, r − ε) ⊂
B(y, r) ⊂ B(x, r + ε). Thus, if xp ∈ B(x, ε), we infer that

k∏

l=p+1

1B(xp,r)(xl)

∫

Xp−1

⎡

⎣
p−1∏

j=1

k∏

l=j+1

1B(xj ,r)(xl)

⎤

⎦dμp−1(1, p − 1)

=
k∏

l=p+1

1B(xp,r)(xl)

∫

Xp−1

⎡

⎢
⎢
⎣

p−1∏

j=1

k∏

l=j+1
l�=p

1B(xj ,r)(xl)

⎤

⎥
⎥
⎦

⎡

⎣
p−1∏

j=1

1B(xp,r)(xj)

⎤

⎦dμp−1(1, p − 1)

≤
k∏

l=p+1

1B(x,r+ε)(xl)

∫

Xp−1

⎡

⎢
⎢
⎣

p−1∏

j=1

k∏

l=j+1
l�=p

1B(xj ,r)(xl)

⎤

⎥
⎥
⎦

⎡

⎣
p−1∏

j=1

1B(x,r+ε)(xj)

⎤

⎦dμp−1(1, p − 1).

Then, we deduce that

ess-sup
y∈B(x,ε)∩X

ψp(y)

≤
k∏

l=p+1

1B(x,r+ε)(xl)

∫

Xp−1

p−1∏

j=1

k∏

l=j+1
l�=p

1B(xj ,r)(xl)

p−1∏

j=1

1B(x,r+ε)(xj)dμp−1(1, p − 1).

(7)
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Using similar ideas, one can prove that

ess-inf
y∈B(x,ε)∩X

ψp(y)

≥
k∏

l=p+1

1B(x,r−ε)(xl)

∫

Xp−1

p−1∏

j=1

k∏

l=j+1
l�=p

1B(xj ,r)(xl)

p−1∏

j=1

1B(x,r−ε)(xj)dμp−1(1, p − 1).

(8)

From (7) and (8), we find that

ess-sup
y∈B(x,ε)∩X

ψp(y) − ess-inf
ỹ∈B(x,ε)∩X

ψp(ỹ)

≤
k∏

l=p+1

1B(x,r+ε)(xl)
∫

Xp−1

p−1∏

j=1

k∏

l=j+1
l �=p

1B(xj ,r)(xl)A
p−1
1 (x)dμp−1(1, p − 1)

+Ak
p+1(x)

∫

Xp−1

p−1∏

j=1

k∏

l=j+1
l �=p

1B(xj ,r)(xl)
p−1∏

j=1

1B(x,r−ε)(xj)dμp−1(1, p − 1),

where for i < j we define Aj
i (x) =

∏j
θ=i 1B(x,r+ε)(xθ) −

∏j
θ=i 1B(x,r−ε)(xθ).

Therefore,
∫

Bε(X)
osc(ψp, Bε(x))dx ≤

∫

Bε(X)

(∫

Xp−1
Ap−1

1 (x)dμp−1(1, p − 1) + Ak
p+1(x)

)

dx. (9)

Since μ is absolutely continuous we observe that
∫

Xp−1
Ap−1

1 (x)dμp−1(1, p − 1) = μ(B(x, r + ε))p−1 − μ(B(x, r − ε))p−1

≤ (p − 1) (μ(B(x, r + ε)) − μ(B(x, r − ε)) ≤ c(p − 1)Leb(D(x)), (10)

where D(x) = B(x, r + ε) \ B(x, r − ε). For the second term in (9), we have
∫

Bε(X)

Ak
p+1(x)dx ≤ Leb

⎛

⎝
k⋂

l=p+1

B(xl, r + ε) \
k⋂

l=p+1

B(xl, r − ε)

⎞

⎠

≤
k∑

l=p+1

Leb (B(xl, r + ε) \ B(xl, r − ε)) =
k∑

l=p+1

Leb(D(xl)). (11)

One can see that for any y ∈ R
N

Leb(D(y)) ≤ 2C0ε

N−1∑

k=0

(
N

k

)

≤ 2N+1C0ε. (12)

Finally, from (9)–(12) we deduce that

|ψ|α ≤ sup
0<ε≤ε0

ε−α
(
c(p − 1)2N+1C0εLeb(Bε(X)) + (k − p)2N+1C0ε

)
≤ C1ε

1−α
0 ,

(13)

where C1 = c(p − 1)2N+1C0Leb(Xε0) + (k − p)2N+1C0.
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Thus, from (5) and (13), we obtain that (H2) is satisfied. Moreover, one
can show easily that Dk(μ) = N and the proposition is proved. �

6. Proof of the Symbolic Case

In this section, we prove the symbolic case (Theorem 4.1). We emphasize that
even if the proof is based on the ideas of Theorem 7 in [10], the generalization is
not immediate and some extra care is needed. In particular, one needs to choose
carefully between several different (and equivalent) definitions for Sn (see (14)
and (25)) so the proof goes smoothly when using the mixing assumptions. We
will focus on these extensions rather than the technical details that are similar
to the ideas in [10].

We also observe that next section is dedicated to Theorems 2.2 and 2.6
whose proofs follow the lines of the proof of Theorem 4.1 but are more complex
and technical. Thus, this section can be seen as a warm-up to Sect. 7.

We will assume that the system is α-mixing with an exponential decay,
the ψ-mixing case can be easily deduced using the same ideas.

Proof of Theorem 4.1-(5). First, for ε > 0 and kn > 0 let us define

Sn(x1, . . . , xk) =
n−1∑

i1,...,ik=0

k∏

l=2

1Ckn (σi1x1)(σ
ilxl), (14)

and observe that

Sn(x1, . . . , xk) ≥ 1 ⇐⇒ Mn(x1, . . . , xk) ≥ kn. (15)

Next, we compute the expectation of Sn. Since P is a σ-invariant proba-
bility measure, we infer that

E(Sn) =
n−1∑

i1,...,ik=0

∫

Ω

[
k∏

l=2

∫

Ω

1Ckn (σi1x1)(σ
ilxl)dP(xl)

]

dP(x1)

=
n−1∑

i1,...,ik=0

∫

Ω

P
(
Ckn

(σi1x1)
)k−1

dP(x1) = nk

∫

Ω

P
(
Ckn

(x1)
)k−1

dP(x1).

Using the partition of kn-cylinders, we infer that

E(Sn) = nk
∑

Ckn

∫

Ckn

P
(
Ckn

∩ Ckn
(x1)

)k−1
dP(x1) = nk

∑

Ckn

P (Ckn
)k

. (16)

Now we are ready to prove (5).
Define kn = 1

(k−1)Hk−ε (k log n+log log n). From (15), (16) and Markov’s
inequality, we find that

P
k
(
Mn(x1, . . . , xk) ≥ kn

)
≤ E(Sn) = nk

∑

Ckn

P (Ckn
)k

.



V. Barros, J. Rousseau Ann. Henri Poincaré

By the definition of the lower entropy and the definition of kn, for n large
enough, we have

P
k
(
Mn(x1, . . . , xk) ≥ kn

)
≤ 1

log n
.

Finally, choosing a subsequence n
 = �e
2�, we know that

P
k
(
Mn(x1, . . . , xk) ≥ kn�

)
≤ 1

log n

≤ 1

�2
.

Thus,
∑


 P
k
(
Mn(x1, . . . , xk) ≥ kn�

)
< +∞. By Borel–Cantelli Lemma, we

know that

Mn�
(x1, . . . , xk)
log n


≤ 1
(k − 1)Hk − ε

(

k +
log log n


log n


)

,

for P
k-almost every (x1, . . . , xk) ∈ Ωk and � large enough. Since ε > 0 can be

chosen arbitrarily small we obtain that

lim

→+∞

Mn�
(x1, . . . , xk)
log n


≤ k

(k − 1)Hk

.

Observing that (n
)
 is increasing, (Mn)n is increasing and lim
→+∞ log n�

log n�+1
=

1, we infer that the last inequality holds if we replace nl by n, and (5) is proved.
�

Proof of Theorem 4.1-(6). Let b < 0 to be chosen later. To prove (6), we set

kn =
1

(k − 1)Hk + ε
(k log n + b log log n).

From (15) and Chebyshev’s inequality, we infer that

P k
(
Mn(x1, . . . , xk) < kn

)
= P

k
(
Sn(x1, . . . , xk) = 0

)
≤ var(Sn)

E(Sn)2
. (17)

In order to bound var(Sn)
E(Sn)2 = E(S2

n)−E(Sn)2

E(Sn)2 , we need to analyse the term

E(S2
n) =

∑

i1,...,ik=0,...,n−1
i′
1,...,i′

k=0,...,n−1

∫

Ωk

k∏

l=2

1Ckn (σi1x1)(σ
ilxl)1

Ckn (σi′
1x1)

(σi′
lxl)dPk(x1, . . . , xk).

(18)

We will split this sum into two cases depending on the relative position of il
and i′l.

Let g = g(n) = log(n2k+1). First of all, we observe that if |il −i′l| > g+kn

then the α−mixing condition gives that
∫

Ω

1Ckn (σi1x1)(σ
ilxl)1

Ckn (σi′
1x1)

(σi′
lxl)dP(xl)

≤ α(g) + P
(
Ckn

(σi1x1)
)
P

(
Ckn

(σi′
1x1)

)
. (19)
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If otherwise |il − i′l| ≤ g + kn, then Hölder’s inequality infers that
∫

Ω
1Ckn (σi1x1)(σ

ilxl)1
Ckn (σi′

1x1)
(σi′

lxl)dP(xl) ≤ P
(
Ckn (σ

i1x1)
)1/2

P

(
Ckn (σ

i′
1x1)

)1/2
.

(20)

Now suppose that il − i′l > g + kn for every l ∈ {1, . . . , k} (the case
i′l − il > g + kn can be treated identically). From (19) we find that

∫

Ωk

k∏

l=2

1Ckn (σi1x1)(σ
ilxl)1

Ckn (σi′
1x1)

(σi′
lxl)dPk(x1, . . . , xk)

=

∫

Ω

[
k∏

l=2

∫

Ω

1Ckn (σi1x1)(σ
ilxl)1

Ckn (σi′
1x1)

(σi′
lxl)dP(xl)

]

dP(x1)

≤
∫

Ω

(
α(g) + P

(
Ckn

(σi1x1)
)
P

(
Ckn

(σi′
1x1)

))k−1
dP(x1)

≤ (2k−1 − 1)α(g) +

∫

Ω

P

(
Ckn

(σi1x1)
)k−1

P

(
Ckn

(σi′
1x1)

)k−1
dP(x1).

(21)

To conclude the first case, we use the partition {Ckn
∩σ−(i1−i′

1)C ′
kn

}Ckn ,C′
kn

of Ω to infer that
∫

Ω
P
(
Ckn (σ

i1x1)
)k−1

P

(
Ckn(σ

i′
1x1)

)k−1
dP(x1)

=
∑

Ckn ,C′
kn

∫

Ckn ∩σ−(i1−i′
1)C′

kn

P

(
Ckn (σ

i1−i′
1x1)

)k−1
P
(
Ckn (x

1)
)k−1

dP(x1)

=
∑

Ckn ,C′
kn

P(Ckn ∩ σ−(i1−i′
1)C′

kn
)P (Ckn)

k−1
P
(
C′

kn

)k−1

≤ α(g) +

⎛

⎝
∑

Ckn

P (Ckn )
k

⎞

⎠

2

.

(22)

Next, for p ∈ {1, . . . , k}, assume that we have p pairs of close indices and
k − p pairs of distant indices. We will firstly treat the case where |i1 − i′1| ≤
g+kn. Without loss of generality, we can assume |i2−i′2| ≤ g+kn,. . . ,|ip−i′p| ≤
g + kn, |ip+1 − i′p+1| > g + kn,. . . , |ik − i′k| > g + kn. From (19) and (20), we
deduce that

∫

Ωk

k∏

l=2

1Ckn (σi1x1)(σ
ilxl)1

Ckn (σi′
1x1)

(σi′
lxl)dPk(x1, . . . , xk)

≤
∫

Ω

(
α(g) + P

(
Ckn (σ

i1x1)
)
P

(
Ckn (σ

i′
1x1)

))k−p

×
(

P
(
Ckn (σ

i1x1)
)1/2

P

(
Ckn (σ

i′
1x1)

)1/2
)p−1

dP(x1)

≤ (2k−p − 1)α(g) +

∫

Ω
P
(
Ckn (σ

i1x1)
)k−(p+1)/2

P

(
Ckn (σ

i′
1x1)

)k−(p+1)/2
dP(x1).

(23)
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Using Hölder’s inequality and the invariance of P, we obtain
∫

Ω

P
(
Ckn

(σi1x1)
)k−(p+1)/2

P

(
Ckn

(σi′
1x1)

)k−(p+1)/2

dP(x1)

≤
∫

Ω

P
(
Ckn

(x1)
)2k−(p+1)

dP(x1) =
∑

Ckn

P (Ckn
)2k−p

≤

⎛

⎝
∑

Ckn

P (Ckn
)k

⎞

⎠

(2k−p)/k

, (24)

where the last inequality came from the fact that x 
→ xk/(p+k) is a countably
subadditive function.

If |i1 − i′1| > g + kn, then since we have p ≥ 1 pairs of close indices,
there exists at least one j ∈ {2, . . . , k} such that |ij − i′j | ≤ g + kn. In this
case, the estimations (23) and (24) could be done similarly using the following
equivalent definition of Sn

Sn(x1, . . . , xk) =
n−1∑

i1,...,ik=0

k∏

l=1
l �=j

1Ckn (σij xj)(σ
ilxl). (25)

Now, gathering the estimates (18) and (21)–(24) we conclude that

var(Sn) ≤ n2k3kα(g) +
k∑

p=1

⎡

⎢
⎣

(
k

p

)

n2k−p(g + kn)p

⎛

⎝
∑

Ckn

P (Ckn
)k

⎞

⎠

(2k−p)/k
⎤

⎥
⎦

= n2k3kα(g) +
k∑

p=1

[(
k

p

)

(g + kn)p (E(Sn))(2k−p)/k

]

. (26)

Thus, (26) together with (17) gives us

P
k
(
Mn(x1, . . . , xk) < kn

)
≤ n2k3kα(g)

E(Sn)2
+

k∑

p=1

(
k
p

)
(g + kn)p

(E(Sn))p/k
.

By the definitions of kn and (16), we observe that for n large enough we have
E(Sn) ≥ (log n)−b, and since g = log

(
n2k+1

)
, we infer that

n2k3kα(g)
E(Sn)2

= O
(

1
log n

)

.

We can choose b � −1 so that

P
k
(
Mn(x1, . . . , xk) < kn

)
= O

(
1

log n

)

.

To conclude the proof, it suffices to take a subsequence n
 and use Borel–
Cantelli Lemma as in the proof of (5). �
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7. Proofs of the Main Results

In this section, we adapt the proof of Theorem 4.1 for multiple orbits (Theo-
rems 2.2 and 2.6). In order to do that, one must replace Mn by − log mn and
the cylinders Ck(x) by balls B(x, e−k). However, one major drawback is that
for cylinders we have that x ∈ Cn(y) implies that Cn(y) = Cn(x) but, when
working with balls, x ∈ B(y, r) does not imply that B(y, r) = B(x, r). This
simple fact prohibits us to define Sn as in the previous section, in particular
in view of (25). To overcome this problem, we will need to define Sn as

Sn(x1, . . . , xk) =
n−1∑

i1,...,ik=0

k−1∏

j=1

k∏

l=j+1

1B(T ij xj ,rn)(T
ilxl) (27)

which will complexify our proofs. In particular, we will need to use the following
lemma in the proof of both theorems.

Lemma 7.1.

(k − 1)Dk(μ) = lim
r→0

log
∫

Xk

∏k−1
j=1

∏k
l=j+1 1B(xj ,r)(xl)dμk(1, k)

log r

and

(k − 1)Dk(μ) = lim
r→0

log
∫

Xk

∏k−1
j=1

∏k
l=j+1 1B(xj ,r)(xl)dμk(1, k)

log r

Proof. First of all, one can observe that for every (x1, . . . , xk) ∈ Xk

k−1∏

j=1

k∏

l=j+1

1B(xj ,r)(xl) ≤
k∏

l=2

1B(x1,r)(xl).

Thus,
∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(xj ,r)(xl)dμk(1, k) ≤
∫

X

μ (B (x, r))k−1 dμ(x). (28)

Moreover, one can observe that if {xi, xj} ⊂ B(x1, r/2) then xi ∈ B(xj , r).
Therefore,

k∏

l=2

1B(x1,r/2)(xl) ≤
k−1∏

j=1

k∏

l=j+1

1B(xj ,r)(xl)

for every (x1, . . . , xk) ∈ Xk, which implies that
∫

X

μ
(
B
(
x,

r

2

))k−1

dμ(x) ≤
∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(xj ,r)(xl)dμk(1, k). (29)

Using (28) and (29) and the fact that limr→0
log(r/2)
log r = 1, we get the result.

�
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Proof of Theorem 2.2. As in the proof of Theorem 4.1–(6), it suffices to show
that

μk (mn(x1, . . . , xk) < rn) = O
(

1
log n

)

.

For ε > 0, let us define

kn =
1

(k − 1)Dk(μ) − ε
(k log n + log log n) and rn = e−kn .

Defining Sn(x1, . . . , xk) as in (27), it is easy to see that for every (x1, . . . , xk) ∈
Xk

mn(x1, . . . , xk) < rn ⇐⇒ Sn(x1, . . . , xk) ≥ 1, (30)
where mn was defined in (1). Then, from (30) and Markov’s inequality, we
deduce that

μk (mn(x1, . . . , xk) < rn) ≤ E(Sn)

=
n−1∑

i1,...,ik=0

∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(xj ,rn)(xl)dμk(1, k)

≤ nk

∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(xj ,rn)(xl)dμk(1, k),

since μ is invariant.
By Lemma 7.1 and the definition of kn, for n large enough, we infer that

μk (mn(x1, . . . , xk) < rn) ≤ nkr(k−1)Dk(μ)−ε
n =

1
log n

,

and this is the desired conclusion. �

Before proving Theorem 2.6, we state a few facts in order to simplify the
calculations. At first let us recall the notion of (λ, r)-grid partition.

Definition 7.2. Let 0 < λ < 1 and r > 0. A partition {Qi}∞
i=1 of X is called a

(λ, r)-grid partition if there exists a sequence {yi}∞
i=1 such that for any i ∈ N

B(yi, λr) ⊂ Qi ⊂ B(yi, r).

The following technical lemma will be used during the proof. One can
observe that in the symbolic case, this lemma corresponds to (24). Moreover,
this lemma is a generalization of Lemma 14 in [10].

Lemma 7.3. Let p ∈ {1, . . . , k−1}. Under the hypotheses of Theorem 2.6, there
exists a constant K > 0 such that for n large enough

∫

Xk−p

k−1∏

j=p+1

k∏

l=j+1

1B(xj ,rn)(xl)

⎛

⎝
∫

Xp

p∏

j=1

k∏

l=j+1

1B(xj ,rn)(xl)dμp(1, p)

⎞

⎠

2

dμk−p(p + 1, k)

≤ K

⎛

⎝
∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(xj ,rn)(xl)dμk(1, k)

⎞

⎠

(p+k)/k

= K

(
E(Sn)

nk

) p+k
k

,

where dμj−i+1(i, j) denotes dμj−i+1(xi, . . . , xj), for i < j.
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Proof. By Proposition 2.1 in [27], there exist 0 < λ < 1
2 and R > 0 such that

for any 0 < r < R there exists a (λ, r)-grid partition.
Given r0 as in Definition 2.3, let us choose n large enough so that rn <

min{R, r0/2}. Let {Qi}∞
i=1 be a (λ, rn

2 )-grid partition and {yi}∞
i=1 be such that

B
(
yi, λ

rn

2

)
⊂ Qi ⊂ B

(
yi,

rn

2

)
.

Using this partition, we infer that

∫

Xk−p

k−1∏

j=p+1

k∏

l=j+1

1B(xj ,rn)(xl)

⎛

⎝
∫

Xp

p∏

j=1

k∏

l=j+1

1B(xj ,rn)(xl)dμp(1, p)

⎞

⎠

2

dμk−p(p + 1, k)

≤
∫

Xk−p

k∏

l=p+2

1B(xp+1,rn)(xl)

⎛

⎝
∫

Xp

p∏

j=1

1B(xj ,rn)(xp+1)dμp(1, p)

⎞

⎠

2

dμk−p(p + 1, k)

=

∫

X
μ (B(xp+1, rn))

p+k−1 dμ(xp+1) =
∑

i

∫

Qi

μ (B(xp+1, rn))
p+k−1 dμ(xp+1). (31)

Now, for i fixed, there exist ki elements {Qi,j}ki
j=1 of the partition

{Qk}∞
k=1 such that Qi,j ∩ B(yi, 2rn) �= ∅ for j = 1, . . . , ki.

Since the space is tight, there exists a constant K0 depending only on
N0 such that ki ≤ K0 (see, for example, the proof of Theorem 4.1 in [27]).
Defining Qi,j = ∅ for ki < j ≤ K0 we infer that

⋃

xp+1∈Qi

B(xp+1, rn) ⊂ B(yi, 2rn) ⊂
K0⋃

j=1

Qi,j . (32)

From (32) we know that

∑

i

∫

Qi

μ (B(xp+1, rn))p+k−1 dμ(xp+1) ≤
∑

i

∫

Qi

⎛

⎝
K0∑

j=1

μ (Qi,j)

⎞

⎠

p+k−1

dμ(xp+1)

=
∑

i

μ(Qi)

⎛

⎝
K0∑

j=1

μ (Qi,j)

⎞

⎠

p+k−1

≤
∑

i

⎛

⎝
K0∑

j=1

μ (Qi,j)

⎞

⎠

p+k

≤ Kp+k−1
0

∑

i

K0∑

j=1

μ (Qi,j)
p+k ,

where the last inequality is deduced from Jensen’s inequality. Now, since the
elements Qi,j cannot participate in more than K0 different sums (one can see
the arguments leading to (12) in [27]) and since x 
→ xk/(p+k) is a countably
subadditive function, we infer that

∑

i

∫

Qi

μ (B(xp+1, rn))
p+k−1 dμ(xp+1) ≤ Kp+k

0

∑

i

μ (Qi)
p+k

≤ Kp+k
0

(
∑

i

μ (Qi))
k

)(p+k)/k

= Kp+k
0

(
∑

i

∫

Xk

k∏

l=1

1Qi
(xl)dμk(1, k)

)(p+k)/k

. (33)
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Note that for any y ∈ Qi, we have Qi ⊂ B(y, rn). Thus, if {x1, · · · , xk} ⊂ Qi,
then we have xl ∈ B(xj , rn) for any j, l = 1, . . . , k and we conclude that

∑

i

∫

Xk

k∏

l=1

1Qi
(xl)dμk(1, k) ≤

∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(xj ,rn)(xl)dμk(1, k). (34)

Finally, (31), (33) and (34) give us

∫

Xk−p

k−1∏

j=p+1

k∏

l=j+1

1B(xj ,rn)(xl)

⎛

⎝
∫

Xp

p∏

j=1

k∏

l=j+1

1B(xj ,rn)(xl)dμp(1, p)

⎞

⎠

2

dμk−p(p + 1, k)

≤ Kp+k
0

⎛

⎝
∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(xj ,rn)(xl)dμk(1, k)

⎞

⎠

(p+k)/k

.

and the result follows with K = Kp+k
0 . �

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Without loss of generality, we will assume in the proof
that θn = e−n.

For ε > 0, let us define

kn =
1

(k − 1)Dk(μ) + ε
(k log n + b log log n) and rn = e−kn .

Using the same notation as in the proof of Theorem 2.2, we recall that

E(Sn) = nk

∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(xj ,rn)(xl)dμk(1, k). (35)

To simplify our equations, from now on, we will denote by B(xj) the set
B(xj , rn).

Using (30) and Chebyshev’s inequality, we obtain

μk (mn(x1, . . . , xk) ≥ rn) ≤ μk (Sn(x1, . . . , xk) = 0) ≤ var(Sn)
E(Sn)2

. (36)

Thus, we need to control the variance of Sn. First of all, we have

var(Sn) =
∑

i1,...,ik=0,...,n−1
i′
1,...,i′

k
=0,...,n−1

∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(T ij xj)
(T

il xl)1
B(T

i′
j xj)

(T
i′

l xl)dμ
k
(1, k)−E(Sn)

2
.

Let g = g(n) = log(nγ) where γ > 0 will be defined later.
We will split the last sum depending on the relative position of il and i′l.

Without loss of generality, we can always suppose il > i′l.
We first consider the case i1 − i′1 > g, . . . , ik − i′k > g.
Since i1 − i′1 > g, then by (H1) and (H2),

∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(T ij xj)
(T

il xl)1
B(T

i′
j xj)

(T
i′

l xl)dμ
k
(1, k)

=

∫

Xk−1

k−1∏

j=2

k∏

l=j+1

1B(T ij xj)
(T

il xl)1
B(T

i′
j xj)

(T
i′

l xl) ×
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×
[∫

X

k∏

l=2

1
B(T i1−i′

1 x1)
(T

il xl)1B(x1)(T
i′

l xl)dμ(x1)

]

dμ
k−1

(2, k)

≤
∫

Xk−1

k−1∏

j=2

k∏

l=j+1

1B(T ij xj)
(T

il xl)1
B(T

i′
j xj)

(T
i′

l xl)

×
[∫

X

k∏

l=2

1B(x1)(T
il xl)dμ(x1)

] [∫

X

k∏

l=2

1B(x1)(T
i′

l xl)dμ(x1)

]

dμ
k−1

(2, k) + c
2
r

−2ξ
n θg

=: I + c
2
r

−2ξ
n θg. (37)

Now we use that i2 − i′2 > g and the same ideas to find that

I =

∫

Xk−2

k−1∏

j=3

k∏

l=j+1

1B(T ij xj)
(T

il xl)1
B(T

i′
j xj)

(T
i′

l xl)

×
∫

X

[
k∏

l=3

1
B(T i2−i′

2 x2)
(T

il xl)

∫

X

1B(x1)(T
i2−i′

2x2)
k∏

l=3

1B(x1)(T
il xl)dμ(x1)

]

×
[

k∏

l=3

1B(x2)(T
i′

l xl)

∫

X

1B(x1)(x2)
k∏

l=3

1B(x1)(T
i′

l xl)dμ(x1)

]

dμ(x2)dμ
k−2

(3, k)

≤
∫

Xk−2

k−1∏

j=3

k∏

l=j+1

1B(T ij xj)
(T

il xl)1
B(T

i′
j xj)

(T
i′

l xl)

×
∫

X2
1B(x1)(x2)

k∏

l=3

1B(x1)(T
il xl)1B(x2)(T

il xl)dμ
2
(x1, x2)

×
∫

X2
1B(x1)(x2)

k∏

l=3

1B(x1)(T
i′

l xl)1B(x2)(T
i′

l xl)dμ
2
(x1, x2)dμ

k−2
((3, k)) + c

2
r

−2ξ
n θg.

(38)

Applying this argument again, we will have on the p-th step (ip − i′p > g)

∫

Xk

k−1∏

j=1

k∏

l=j+1

1
B(T

ij xj)
(T ilxl)1

B(T
i′
j xj)

(T i′
lxl)dμk(1, k)

≤
∫

Xk−p

k−1∏

j=p+1

k∏

l=j+1

1
B(T

ij xj)
(T ilxl)1

B(T
i′
j xj)

(T i′
lxl)

×
∫

Xp

⎡

⎣
p−1∏

j=1

p∏

l=j+1

1B(xj)
(xl)

⎤

⎦

⎡

⎣
p∏

j=1

k∏

l=p+1

1B(xj)
(T ilxl)

⎤

⎦ dμp(1, p)

×
∫

Xp

⎡

⎣
p−1∏

j=1

p∏

l=j+1

1B(xj)
(xl)

⎤

⎦

⎡

⎣
p∏

j=1

k∏

l=p+1

1B(xj)
(T i′

lxl)

⎤

⎦ dμp(1, p)dμk−p(p + 1, k)

+c2pr−2ξ
n θg =: II + c2pr−2ξ

n θg. (39)

Therefore, when i1 − i′1 > g, i2 − i′2 > g,. . . , ik − i′k > g we have

∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(T ij xj)
(T ilxl)1

B(T
i′
j xj)

(T i′
lxl)dμk(1, k)
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≤ c2kr−2ξ
n θg +

⎛

⎝
∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(xj)(xl)dμk(1, k)

⎞

⎠

2

. (40)

Now, if i1 − i′1 > g, i2 − i′2 ≤ g,. . . , ik − i′k ≤ g, we first proceed as in (37)
and then, to estimate the term I, we use Hölder’s inequality to find that

I =

∫

Xk−1

k−1∏

j=2

k∏

l=j+1

1B(T ij xj)
(T

il xl)

[∫

X

k∏

l=2

1B(x1)(T
il xl)dμ(x1)

]

×
k−1∏

j=2

k∏

l=j+1

1
B(T

i′
j xj)

(T
i′

l xl)

[∫

X

k∏

l=2

1B(x1)(T
i′

l xl)dμ(x1)

]

dμ
k−1

(2, k)

≤
⎛

⎝
∫

Xk−1

⎛

⎝
k−1∏

j=2

k∏

l=j+1

1B(T ij xj)
(T

il xl)

[∫

X

k∏

l=2

1B(x1)(T
il xl)dμ(x1)

]⎞

⎠

2

dμ
k−1

(2, k)

⎞

⎠

1/2

×
⎛

⎝
∫

Xk−1

⎛

⎝
k−1∏

j=2

k∏

l=j+1

1B(T ij xj)
(T

i′
l xl)

[∫

X

k∏

l=2

1B(x1)(T
i′

l xl)dμ(x1)

]⎞

⎠

2

dμ
k−1

(2, k)

⎞

⎠

1/2

.

Finally, we use the invariance of μ to conclude that

I ≤
∫

Xk−1

⎛

⎝
k−1∏

j=2

k∏

l=j+1

1B(xj)(xl)

[∫

X

k∏

l=2

1B(x1)(xl)dμ(x1)

]⎞

⎠

2

dμk−1(2, k)

=
∫

Xk−1

k−1∏

j=2

k∏

l=j+1

1B(xj)(xl)

[∫

X

k∏

l=2

1B(x1)(xl)dμ(x1)

]2

dμk−1(2, k). (41)

In the case i1−i′1 > g, . . . , ip −i′p > g and ip+1−i′p+1 ≤ g, . . . , ik −i′k ≤ g,
we proceed as in (37)–(39) and then we use Holder’s inequality to infer that

II =

∫

Xk−p
f(p + 1, k)g(p + 1, k)dμk−p(p + 1, k)

≤
(∫

Xk−p
f2(p + 1, k)dμk−p(p + 1, k)

)1/2 (∫

Xk−p
g2(p + 1, k)dμk−p(p + 1, k)

)1/2

,

where f(p + 1, k) denotes the function f(xp+1, . . . , xk) defined as

f(p + 1, k) =
k−1∏

j=p+1

k∏

l=j+1

1B(T ij xj)
(T ilxl) ×

×
∫

Xp

p−1∏

j=1

p∏

l=j+1

1B(xj)(xl)
p∏

j=1

k∏

l=p+1

1B(xj)(T
ilxl)dμp(1, p),

and analogously for g(p + 1, k) = g(xp+1, . . . , xk)

g(p + 1, k) =
k−1∏

j=p+1

k∏

l=j+1

1
B(T

i′
j xj)

(T i′
lxl) ×

×
∫

Xp

p−1∏

j=1

p∏

l=j+1

1B(xj)(xl)
p∏

j=1

k∏

l=p+1

1B(xj)(T
i′
lxl)dμp(1, p).
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Then, we use the invariance of μ to infer that

II ≤
∫

Xk−p

k−1∏

j=p+1

k∏

l=j+1

1B(xj)
(xl)

⎛

⎝
∫

Xp

p∏

j=1

k∏

l=j+1

1B(xj)
(xl)dμp(1, p)

⎞

⎠

2

dμk−p(p + 1, k).

(42)
Finally, we observe that if i1 − i′1 ≤ g,. . . , ik − i′k ≤ g then

∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(T ij xj)
(T ilxl)1

B(T
i′
j xj)

(T i′
lxl)dμk(1, k)

≤
∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(T ij xj)
(T ilxl)dμk(1, k)

=
∫

Xk

k−1∏

j=1

k∏

l=j+1

1B(xj)(xl)dμk(1, k) = n−k
E(Sn). (43)

One can notice that all the other cases can be treated by symmetry.
Thus, from (36) and (40)–(43) we conclude that

μk (mn(x1, . . . , xk) ≥ rn) ≤ 1

E(Sn)2

[

n2kc2kr−2ξ
n θg +

k−1∑

p=1

(k

p

)
n2p+k−pgk−p

×
∫

Xk−p

k−1∏

j=p+1

k∏

l=j+1

1B(xj)
(xl)

⎛

⎝
∫

Xp

p∏

j=1

k∏

l=j+1

1B(xj)
(xl)dμp

⎞

⎠

2

dμk−p(p + 1, k)

+

k−1∑

p=1

(k

p

)
n2p+k−pgk−pc2pr−2ξ

n θg + gk
E(Sn)

]

.

Thus, by Lemma 7.3, we deduce

μk (mn(x1, . . . , xk) ≥ rn) ≤ 1

E(Sn)2

[

n2kc2kr−2ξ
n θg +

k−1∑

p=1

(k

p

)
np+kgk−pc2pr−2ξ

n θg

+

k−1∑

p=1

(k

p

)
np+kgk−p

(
n−k

E(Sn)
)(p+k)/k

+ gk
E(Sn)

]

= θg

n2kc2kr−2ξ
n +

∑k−1
p=1

(k
p

)
np+kgk−pc2pr−2ξ

n

E(Sn)2
+

k−1∑

p=1

(k
p

)
gk−p

E(Sn)2−(p+k)/k
+

gk

E(Sn)
.

By definitions of rn, kn, (35) and Lemma 7.1, we observe that for n large
enough we have

E(Sn) ≥ (log n)−b.

Since g = log (nγ), we have for γ large enough that

θg

n2kc2kr−2ξ
n +

∑k−1
p=1

(
k
p

)
np+kgk−pc2pr−2ξ

n

E(Sn)2
= O

(
1

log n

)

.
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Then, we can choose b � −1 such that
k−1∑

p=1

(
k
p

)
gk−p

E(Sn)2−(p+k)/k
+

gk

E(Sn)
≤

k−1∑

p=1

(
k
p

)
gk−p

(log n)−b(k−p)/k
+

gk

(log n)−b
= O

(
1

log n

)

,

and we have

μk (mn(x1, . . . , xk) ≥ rn) = O
(

1
log n

)

. (44)

To conclude the proof, it suffices to take a subsequence n
 and use Borel–
Cantelli Lemma as in the proof of (5). �

In order to simplify the proof of Theorem 2.7, we state and prove the
following technical lemma:

Lemma 7.4. Let ϕ be given by

ϕ(xp) =
∫

Xp−1

⎡

⎣
p−1∏

j=1

k∏

l=j+1

1B(xj)(xl)

⎤

⎦dμp−1(1, p − 1).

and suppose that (HA) is satisfied. Then, there exist 0 < r0 < 1, c > 0 and
ζ ≥ 0 such that for every p ∈ {2, . . . , k}, for μk−p-almost every xp+1, . . . , xk ∈
X and for any 0 < r < r0, the function ϕ belongs to Hα(X,R) and

||ϕ||Hα ≤ cr−ζ .

Proof. Let 0 < r < r0 and x, y ∈ X. We have

|ϕ(x) − ϕ(y)| =

∣
∣
∣
∣
∣
∣
∣
∣

∫

Xp−1

p−1∏

j=1

k∏

l=j+1
l �=p

1B(xj)(xl)

⎡

⎣
p−1∏

j=1

1B(xj)(x) −
p−1∏

j=1

1B(xj)(y)

⎤

⎦dμp−1(1, p − 1)

∣
∣
∣
∣
∣
∣

≤
∫

Xp−1

∣
∣
∣
∣
∣
∣

p−1∏

j=1

1B(x)(xj) −
p−1∏

j=1

1B(y)(xj)

∣
∣
∣
∣
∣
∣
dμp−1(1, p − 1)

≤
p−2∑

l=0

∫

Xp−1

∣
∣
∣
∣
∣
∣

l∏

j=1

1B(y)(xj)
p−1∏

j=l+1

1B(x)(xj)

−
l+1∏

j=1

1B(y)(xj)
p−1∏

j=l+2

1B(x)(xj)

∣
∣
∣
∣
∣
∣
dμp−1(1, p − 1)

≤
p−2∑

l=0

∫

X

∣
∣1B(x)(xl+1) − 1B(y)(xl+1)

∣
∣ dμ(xl+1)

= (p − 1)
∫

X

∣
∣1B(x)(z) − 1B(y)(z)

∣
∣ dμ(z).
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If d(x, y) ≥ r then

|ϕ(x) − ϕ(y)| ≤ 2(p − 1) ≤ 2(p − 1)
r

d(x, y). (45)

If otherwise d(x, y) < r, then from (HA) we conclude that

|ϕ(x) − ϕ(y)| ≤ (p − 1)
∫

X

∣
∣1B(x)(z) − 1B(y)(z)

∣
∣ dμ(z)

≤ (p − 1) [μ (B(x, r)\ (B(x, r) ∩ B(y, r)))
+μ (B(y, r)\ (B(x, r) ∩ B(y, r)))]

≤ (p − 1)μ (B(x, r + d(x, y))\B(x, r − d(x, y)))

≤ (p − 1)r−ξd(x, y)β , (46)

and the lemma follows from inequalities (45) and (46). �

Proof of Theorem 2.7. When our Banach space C is the space of Hölder func-
tions, (H2) cannot be satisfied since characteristic functions are not continuous.
Thus, we need to adapt the proof of Theorem 2.6 to this setting, approximat-
ing characteristic functions by Lipschitz functions, following the construction
of the proof of Lemma 9 in [45]. We will only prove the key part here, which
is obtaining the equivalent of our inequality (39).

To do so, we fix q ∈ {1, . . . , p} and consider the following term:

I :=

∫

X

[
k∏

l=q+1

1
B(T iq xq)

(T ilxl)1
B(T

i′
q xq)

(T i′
lxl)

×
∫

Xq−1

⎡

⎣
q−2∏

j=1

q−1∏

l=j+1

1B(xj)
(xl)

⎤

⎦

⎡

⎣
q−1∏

j=1

k∏

l=q

1B(xj)
(T ilxl)

⎤

⎦dμq−1(1, q − 1)

×
∫

Xq−1

⎡

⎣
q−2∏

j=1

q−1∏

l=j+1

1B(xj)
(xl)

⎤

⎦

⎡

⎣
q−1∏

j=1

k∏

l=q

1B(xj)
(T i′

lxl)

⎤

⎦dμq−1(1, q − 1)

]

dμ(xq).

We assume |iq − i′q| > g. Let ρ > 0 (to be chosen later). Let ηrn
: [0,∞) → R

be the 1
ρrn

-Lipschitz function such that 1[0,rn] ≤ ηrn
≤ 1[0,(1+ρ)rn] and set

ϕxq+1,...,xk,rn
(x) =

k∏

l=q+1

ηrn
(d(x, xl)). (47)

We observe that ϕxq+1,...,xk,rn
is k−q

ρrn
-Lipschitz. Moreover, we have

k∏

l=q+1

1B(x,rn)(T ilxl) ≤ ϕT iq+1xq+1,...,T ik xk,rn
(x) ≤

k∏

l=q+1

1B(x,(1+ρ)rn)(T ilxl).

(48)
Now we define the following auxiliary function

ΦT iq+1xq+1,...,T ik xk,r(xq) = ϕT iq+1xq+1,...,T ik xk,r(xq) ×

×
∫

Xq−1

⎡

⎣
q−2∏

j=1

q∏

l=j+1

1B(xj)(xl)

⎤

⎦

⎡

⎣
q−1∏

j=1

k∏

l=q+1

1B(xj)(T
ilxl)

⎤

⎦dμq−1(1, q − 1).(49)
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From Lemma 7.4, we observe that for μk−q+1-almost every xq+1, . . . , xk ∈ X
and for any 0 < r < r0 the function Φ belongs to Hα(X,R) and

||ΦT iq+1xq+1,...,T ik xk,r||Hα ≤ cr−ζ + (k − q)(ρr)−1 ≤ cr−ζ + k(ρr)−1.

Using (H1), (48) and (49), we deduce that

I ≤
∫

X

ΦT iq+1xq+1,...,T ik xk,rn
(T iqxq)Φ

T
i′
q+1xq+1,...,T i′

k xk,rn
(T i′

qxq)dμ(xq)

≤
∫

X

ΦT iq+1xq+1,...,T ik xk,rn
(xq)dμ(xq)

∫

X

Φ
T

i′
q+1xq+1,...,T i′

k xk,rn
(xq)dμ(xq)

+θg

∥
∥
∥ΦT iq+1xq+1,...,T ik xk,rn

∥
∥
∥

Hα

∥
∥
∥Φ

T
i′
q+1xq+1,...,T i′

k xk,rn

∥
∥
∥

Hα

≤
∫

X

ΦT iq+1xq+1,...,T ik xk,rn
(xq)dμ(xq)

∫

X

Φ
T

i′
q+1xq+1,...,T i′

k xk,rn
(xq)dμ(xq)

+(cr−ζ
n + k(ρrn)−1)2θg. (50)

At this point we observe that the inequality (50) together with (48) will
not be sufficient to obtain our equivalent of (39) since the radius of the balls
will be (1 + ρ)rn (instead of rn). To overcome this problem, we use (HA). For
simplicity, we use the following notation:

g(xq) =
∫

Xq−1

⎡

⎣
q−2∏

j=1

q∏

l=j+1

1B(xj)(xl)

⎤

⎦

⎡

⎣
q−1∏

j=1

k∏

l=q+1

1B(xj)(T
ilxl)

⎤

⎦dμq−1(1, q − 1).

Thus, from (48) we know that
∫

X
Φ

T
iq+1xq+1,...,T ik xk,rn

(xq)dμ(xq) =

∫

X
ϕ

T
iq+1xq+1,...,T ik xk,r

(xq)g(xp)dμ(xq)

≤
∫

X
g(xq)

k∏

l=q+1

1B(xq,(1+ρ)rn)(T
ilxl)dμ(xq)

=

∫

X
g(xq)

k∏

l=q+1

1B(xq,rn)(T
ilxl)dμ(xq)

+

∫

X
g(xq)

⎛

⎝
k∏

l=q+1

1B(xq,(1+ρ)rn)(T
ilxl) −

k∏

l=q+1

1B(xq,rn)(T
ilxl)

⎞

⎠ dμ(xq)

≤
∫

X
g(xq)

k∏

l=q+1

1B(xq,rn)(T
ilxl)dμ(xq)

+ μ

⎛

⎝
k⋂

l=q+1

B(T ilxl, (1 + ρ)rn) \
k⋂

l=q+1

B(T ilxl, rn)

⎞

⎠ . (51)

Using (HA) we conclude that

μ

⎛

⎝
k⋂

l=q+1

B(T ilxl, (1 + ρ)rn) \
k⋂

l=q+1

B(T ilxl, rn)

⎞

⎠



Shortest Distance Between Multiple Orbits

≤ μ

⎛

⎝
k⋃

l=q+1

B(T ilxl, (1 + ρ)rn) \ B(T ilxl, rn)

⎞

⎠

≤
k∑

l=q+1

μ
(
B(T ilxl, (1 + ρ)rn) \ B(T ilxl, rn)

)
≤ (k − q)r−ξ

n ρβ . (52)

Then, from (51) and (52) and taking ρ small enough we infer that
∫

X

ΦT iq+1xq+1,...,T ik xk,rn
(xq)dμ(xq)

∫

X

Φ
T

i′
q+1xq+1,...,T i′

k xk,rn
(xq)dμ(xq)

≤
∫

X

k∏

l=q+1

1B(xq)(T
ilxl)

∫

Xq−1

q−2∏

j=1

q∏

l=j+1

1B(xj)(xl)
q−1∏

j=1

k∏

l=q+1

1B(xj)(T
ilxl)dμq−1(1, q − 1)dμ(xq)

×
∫

X

k∏

l=q+1

1B(xq)(T
i′
lxl)

∫

Xq−1

q−2∏

j=1

q∏

l=j+1

1B(xj)(xl)
q−1∏

j=1

k∏

l=q+1

1B(xj)(T
i′
lxl)dμq−1(1, q − 1)dμ(xq)

+ 3(k − q)r−ξ
n ρβ

=
∫

Xq

⎡

⎣
q−2∏

j=1

q∏

l=j+1

1B(xj)(xl)

⎤

⎦

⎡

⎣
q∏

j=1

k∏

l=q+1

1B(xj)(T
ilxl)

⎤

⎦dμq(1, q)

×
∫

Xq

⎡

⎣
q−2∏

j=1

q∏

l=j+1

1B(xj)(xl)

⎤

⎦

⎡

⎣
q∏

j=1

k∏

l=q+1

1B(xj)(T
i′
lxl)

⎤

⎦dμq(1, q)

+ 3(k − q)r−ξ
n ρβ .. (53)

Thus, since q ≤ k, (53) together with (50) gives us

I ≤
∫

Xq

⎡

⎣
q−2∏

j=1

q∏

l=j+1

1B(xj)(xl)

⎤

⎦

⎡

⎣
q∏

j=1

k∏

l=q+1

1B(xj)(T
ilxl)

⎤

⎦dμq(1, q)

×
∫

Xq

⎡

⎣
q−2∏

j=1

q∏

l=j+1

1B(xj)(xl)

⎤

⎦

⎡

⎣
q∏

j=1

k∏

l=q+1

1B(xj)(T
i′
lxl)

⎤

⎦dμq(1, q)

+3kr−ξ
n ρβ + (cr−ζ

n + k(ρrn)−1)2θg.

Repeating this process for each q ∈ {1, . . . , p}, we obtain our equivalent
of (39)

∫

Xk

k−1∏

j=1

k∏

l=j+1

1
B(T

ij xj)
(T ilxl)1

B(T
i′
j xj)

(T i′
lxl)dμk(1, k)
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≤ 3pkr−ξ
n ρβ + p(cr−ζ

n + k(ρrn)
−1)2θg

+

∫

Xk−p

k−1∏

j=p+1

k∏

l=j+1

1
B(T

ij xj)
(T ilxl)1

B(T
i′
j xj)

(T i′
lxl)

×
∫

Xp

⎡

⎣
p−1∏

j=1

p∏

l=j+1

1B(xj)
(xl)

⎤

⎦

⎡

⎣
p∏

j=1

k∏

l=p+1

1B(xj)
(T ilxl)

⎤

⎦dμp(1, p)

×
∫

Xp

⎡

⎣
p−1∏

j=1

p∏

l=j+1

1B(xj)
(xl)

⎤

⎦

⎡

⎣
p∏

j=1

k∏

l=p+1

1B(xj)
(T i′

lxl)

⎤

⎦dμp(1, p)dμk−p(p + 1k).

Thus, the rest of the proof follows exactly as in Theorem 2.6 where at the end,
one must choose ρ = n−δ with δ large enough so that (44) holds. �

Proof of Theorem 3.2. The proof follows the lines of the proof of Theorems 2.2
and 2.7, replacing Sn by

Sf
n(x1, . . . , xk) =

n−1∑

i1,...,ik=0

k−1∏

j=1

k∏

l=j+1

1f−1B(f(T ij xj),rn)(T
ilxl).

Another modification worth mentioning is that in (47), ϕxq+1,...,xk,rn
(x) must

be replaced by

ϕf
xq+1,...,xk,rn

(x) =
k∏

l=q+1

ηrn
(d(f(x), f(xl))),

which is a L(k−q)
ρrn

-Lipschitz function (if f is L-Lipschitz). �
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