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1. Introduction

This paper is concerned with the initial value problem (IVP) associated with the one-dimensional
integro-differential nonlocal derivative nonlinear Schrodinger equation (INL-NLS)

{atu + i0d2u = 2BuPy 0y (|u)?) — iBkuly (|u?) + iv|ul*u, (2.8) CR x R (1)

u(z,0) = uo(x)
where u = u(x,t) is a complex-valued function, k € {0, 1}, a, 8 and ~y are real non-negative parameters with
a#0,8#0, Prf =F {X0,400)()f()} = 3(1 +iH)f and L}, is the operator defined by

Lnf=(H~Tn)o:f, (2)

with H to denote the Hilbert transform defined via Fourier transform by

~

(Hf)"(€) = —isgn(&) f(€)
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and 7T denotes the singular integral operator

Tufte) = oo [ cotn (T2 fapay

where p.v. is the Cauchy principal value of the integral and 0 < h < oo.

Note that limp_, o L f = 0 almost everywhere, that is, limy,_, o Tnf = Hf a.e..

This general model was proposed by D. Pelinovsky and R. Grimshaw [20—22] to study the evolution of
quasi-harmonic wave packets at the interface of a two-layer system, where the upper layer is shallow and the
lower one is deep if compared to length scale of quasi-harmonic wave packets. The parameter h is proportional
to the depth of the fluid. If one of the fluids is infinitely deep, i.e., h — oo (k = 0), we have the nonlocal
nonlinear Schrodinger equation (NL-NLS)

dyu + iad?u = 2BuPy 8, ([u]?) + iv|ul*u, (z,t) € R x R, (3)

while with both fluids of finite depth (k = 1), the equation in (1) is the intermediate nonlocal nonlinear
Schrodinger one (INL-NLS)

dyu + iad?u = Bu(l + iTp) 0, (Jul?) + ivful*u, (2,t) € R x R. (4)

In [20] it was showed that Eqgs. (3) and (4) with v = 0 are integrable. Their inverse scattering was
constructed in [21]. Several other physical properties of these equations have been studied by Matsuno [8—14].
For u solution of (1) and

v = (@, 1) = exp Gfa / |u(y,t)\2dy> (1), (5)

— 00

the following quantities are conserved:
Q) = [ oPda. (©
R
k 2
B(0) = [ {alowol? + SlolHau o) = Bl ealof) + - tl® + 2ol fa @
R « 2
Then, for the original equation we have the following conserved quantities along the flow of (1):
Qw = [ .
R

2
() ~f{alosul™ Bluf’ Im(udsa Gl Mo (uf*)= 5 1ol a(ul®)+ 5

2c

From the mathematical viewpoint, a few works are available in the current literature for the NL-NLS
and INL-NLS equations. As far as we know, the only works concerning well-posedness for (1) are due to
Angulo/Moura [2], Moura [17] and Moura/Pilod [18]. In [17], R. Moura showed that the IVP associated to
(1) is locally well-posed for small initial data in Sobolev spaces H*(R) for s > 1, and taking advantage of
the quantities (6) and (7) with a = 8 = 1, the solution extends globally in time for initial data in H'(R).
In [2], Angulo/Moura give a rigorous proof that a Picard interaction scheme can not be applied for solving
the Cauchy problem (1) with data in Sobolev spaces of negative index, study the asymptotic behavior of
solution with respect to spatial variable and also establish the nonexistence of standing wave solutions.
In [18], Moura/Pilod improved the local well-posedness (LWP) theory obtained in [17] without assuming
any restriction on the initial data. More precisely, it was proved the local well-posedness with initial data in
the Sobolev space H*(R) for s > 1.

ul® + %]u\4}dx.

Our goal here is to prove LWP for small initial data in the inhomogeneous Besov space BQ% ! (R). Through-
out the paper, by well-posedness we mean existence, uniqueness, persistence property, and continuous
dependence upon the initial data. Moreover, by a solution we mean a solution in the sense of the associated
integral equation. Our result is the following (for the definitions of the space X see notation (27)).
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1
Theorem 1.1.  There exists 6 > 0 such that for any ug € B;’l (R), with [Juol| 11 < 0, there exist
2

a positive time T = T(||uol 1,) with T(|luol| %1) — 00 when |Jupl| 11— 0 (J,ZSp(J,CE Xr such that
B2’ B2’

1 2 2
Xr <= C([-T, T];B§71(R)), and a unique solution u to the Cauchy problem (1) in Xp. Furthermore,
for any T" € (0,T) there exists ¢ > 0 such that the flow-map data-solution is Lipschitz from {uy €
1
Bf’l(R); ||t — uol| 11 < e} into Xpr.
B2’

1
2
B2

It is known that the main difficulty when one deals with equations containing derivatives in the nonlinear
term, is to overcome the so-called loss of derivatives. For the equation in (1), the terms 2uP,d,(|u|?) and
w(1 4 i75,)0, (|u]*) impose an additional obstacle, since the operator 7, (including the Hilbert transform
H) is skew-adjoint we are not allowed to perform a gauge transformation to remove the derivatives on the
nonlinearity as occurs with the derivative nonlinear Schrodinger equation (8) with pu = 0. We also remark
that the approach based on Kato’s smoothing effect and maximal estimate for the linear operator as that
performed by Kenig, Ponce and Vega in [7] seems to provide well-posedness only for initial data H*(R) with
s > 1/2. But such a result was already reached in [18]. The lack of maximal estimate in Sobolev spaces H?®
with s < 1/2 motivated us to choose Besov spaces rather than Sobolev spaces.

In [24], Takaoka proved that the IVP associated to the more general derivative Schréodinger equation

10su + 8§u = i)\|u\28wu + ipu0,T, (8)

where u = u(z,t) is a complex-valued function, and A and p are two complex constants, is locally well-posed
in H*(R) with s > ;. He used the same gauge transformation as in [19] to cancel the term Au|?0zu in the
nonlinearity and the Fourier restriction norm method, developed by Bourgain and Kenig, Ponce and Vega,
to handle the term pu20,.

It is worth noticing that the methods employed by Takaoka [24] do not seem to apply in the case of the
IVPs associated to Egs. (3) and (4), since those equations are gauge equivalent to

3 2
O + idv = iE|v|4v + iBv TR (Jv]?) + iv|o[’v, 0<h < oo, 9)

via the change of variable (5) and, as observed in the introduction of [24], the Fourier restriction norm
method seems inapplicable to the nonlinearity |v\28wv, appearing implicitly in the nonlinear part of (9).

In order to prove our result we follow the recent approach introduced by Molinet and Ribaud for the
generalized Benjamin—Ono equation [16]. Our strategy combines the contraction principle applied to the

associated integral equation
t
u(t) = U(t)ug +2/ U(t — $)(2BuPy 0y ([ul?) — iBkuly(Jul)?) + iv|u|*u)(s)ds (10)
0

together with interpolations of some linear estimates (Kato’s smoothing effects, Strichartz estimate and
estimates for the maximal function) for phase localized functions associated to the linear dispersive part of
the equation, and a fractional vector-valued Leibniz’s rule derived by Molinet and Ribaud
in [15].

The work is organized as follows. In Section 2 we present the notation, auxiliary lemmas and the resolution
space. In Section 3 some linear estimates determined by the group {e‘“ag }e° o for phase localized functions
are deduced from their corresponding non-localized version. We finish with nonlinear estimates and the proof

of Theorem 1.1.
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2. Notation, auxiliary lemmas and the resolution space

Given any positives constants C', D, by C < D we mean that there exists a constant ¢ > 0 such that
C < ¢D;and, by C ~ D we mean C < D and D < C. Given two operators A and B, we denote by
[A, B] = AB — BA the commutator between A and B. By F{u} or u we will denote the Fourier transform of
u with respect to the space variable x, while F~*{u} or % will denote its inverse Fourier transform. LP-norms
will be written as || - | » or || - [[L» if no confusion is caused. For 1 < p,g < oo and f: R x [0,T] = R, we
define

1Az pe = TIFC) g lley -
[fllza zp is similarly defined, and when p = oo or ¢ = oo, HfHLquT is defined in the natural form. When
p = d, we will wiite /]l pz0 as | fllr -
S(R) will represent the Schwartz space. For s € R (and f € §’) J* = F~! ((1 + |- ]2)%f> will be the

Bessel potential of order —s, DS f = F~1 <\ . ]sf) denotes the Riesz potential of order —s, and 5; =HD;.
The space H*(R) is the usual Sobolev space with norm || - || s == ||J°- || 2.
Let ¢ € S(R) be such that, 0 < ¢ <1, (&) =1 for |{] <1, and ¥(§) = 0 for || > 2. We define

p(&) =v(E) —v(26), v (§) =277 (jeD),

so that
Z@j(g) =1, £€#0, and supp ((p]-) C {Qj_l <|lél < 2j+1}.
JEL

We note that  (§) =1 -3, ¢;(§).
Next, we define the Littlewood—Paley multiplier as

Aif =DV =¢;f, and S;f=Y Af, with feS, jeZ (11)
k<j
Note that
Sof = (W)Y, Vv feS R, (12)
(Sp is the projection in low frequency)

supp S;f C{& + 6] <27} and for [€] <27, S;7() = f(9), (13)
supp D,f C{& 27 < g <27, (14)
F=Y "0 =8of +> A;f = Sof + Puig!. (15)

JEL Jj>1

fg=50fS0g + Z(5r+1f5r+19 — S, fSrg)

r>0
= S0fS0g+ Y _(Ari1fSrg+ Arp19Sriaf), (16)
r>0
Aj(S()fSog) = 0, for all j > 3, (17)
and,
20> (Ari1fSrg + Ar19Sein )} = 20D (Ar_2fSr_3g+ Ar_29Se_2f)}. (18)

r>0 r>j
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If we define Ej = Z/lg:_1 Ajik, then we have that
AjoA; = A (19)

Let C)., 7 € N, be positive real constants. Then
Y Y ve, <> v, (20)
jzlr>g r>0

In fact,

Y B0 =Y ol P20 = Y00 Y el

J>1r>j j>17r>0 r>0 j>1
< E 2 C, E 27l =29 E 27 C,..
r>0 >0 r>0

We will denote by P, f = }'*l{x[o7+oo)(-)f(-)} and P_f = ]_—71{X(_0070](')J?(_)} the projection in positive
and negative frequencies of f, respectively. We also define

Prigf = (1= 50)f, Pinigf = PyPrigf and P_piqf = P_Ppyf.

It is well known that Py;q and Py, are continuous operators on LELZ. for any 1 < p, ¢ < oco. From the
definitions of Sy and Py, it follows that Py, 0 Sp = 0.

In the next lemma we state some results about Littlewood—Paley multipliers whose proof can be found
in [3], Lemma 6.2.1, page 140:

Lemma 2.1. Let1<p<oo and f € S’ be such that A;f € LP. Then for all s € R,
(@) [|7° 25 fllp < 2| &5 fllp, Y3521,

(i) |1D* Aj fllp < 2] &j fllp, VJ € Z,

(@@7) [|°Sofllp < cllSofllp,

with ¢ independent of p and j.

We also have the following version of estimate (ii) in Lemma 2.1 for mixed spaces.

Lemma 2.2. Let f: R x[0,7] — C (0 < T < o0) be a smooth function and p,q € [1,00]. Then for any
jeN,

1074 fllpers S 2°[1 A5 fllprs, (s € R). (21)
The estimate (21) also holds with O (k € N) in place of D3.

Proof. We follow the proof of Lemma 2.2 in [23], in which the estimate (21) is proven for 9%, k € N. From
(19), Minkowski and Young inequalities we have

S N S S /= v
125 D fllppra, = 185 85 Difllipps, = I1D3(85)  * D5 fllie s,
SID3 G50 11 2 fllgp e
Since ¢ € S, we get
s X | S ij:v~ s ~ ] | S Y- s ~
15500y =2 [ 1 [ e [ ptudn | 2do =2 [ | [ v * oy | dy
‘ R V]R ‘ R R
= 2| D¢ < C27%,

and thus, the result is proven. [
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The following commutator estimate will be important to reach our results.
Lemma 2.3. Leta€ (0,1) and 0 < < 1—a. Ifp, p1, p2, ¢, q1, g2 € (1,00) are such that % =14

1 1 1
and = = — + =, then
q q1 + q2’

1 4 1
p1 P2

122, Az, < Nl pon pan 1D fll g2

Moreover, the value g1 = oo is guaranteed when 3 > 0. The lemma is still valid with 53‘, P.DZ or P+l~)g‘ n
place of D .

Proof. See Lema 3.7 in Molinet and Ribaud [15]. O

Let s € R, 1 < p,q < oo. The Besov spaces B, ?(R) are defined by

A 1
Byt ={f € S'®); IIfllpze = 1Sofllee + (D_ 29145 f11%,) " < oo}
Jj=1
The homogeneous Besov spaces are defined as
28,4 — "(R): — ajs a \7
Byt ={f e S'R); [ fllgze = (D_29°14;f1170) 7 < oo}

JET
In the next lemma, we list some facts about Besov spaces and homogeneous Besov spaces. For the proofs
we refer the reader to [3]:

Lemma 2.4. Let s, s1, 85 be real numbers. Then the following properties hold:
(i) If s1 < so then ”fHB;bq < Hf”B;?’q?

(i) If O ¢ supp f then || f]| s ~ |[fllpza,

(i) I 5 = 5 = L then {17 < |1f] 1

Proof. For the proof of (i) see Theorem 6.2.4 in [3]. The proof of (ii) can be found in [3], Theorem 6.3.2.
For item (iii) see the proof of Theorem 6.5.1 in [3]. O

We also need the following estimate for the operator £, defined in (2).

Lemma 2.5. There exists C = C(h) > 0 such that

I£nfll 10 <CIFIl 14 (22)
BQ

3
B2

l71
for any f € Bg

(R).

~

Proof. Expanding in series the term coth(h¢) of Zh\f(ﬁ) = (|¢] — £ coth(h€) + 1) f(£), we get

05 [€] — Ecoth(hg) + 3 < 7.

which implies (22). For more details, we address the reader to reference [1], Lemma 4.1. O

We finish this section defining our space of resolution. Given T' > 0, we define the following semi norms:

J
Ni(u) = HSOUHL%OLQ% + 222 ||Aju||L§,°Lgv (23)
Jj21



326 V. Barros, R. de Moura and G. Santos / Nonlinear Analysis 187 (2019) 320-338

Na(u) = HSOUHLgOLQT + ZQjHAjuHLgOLgu (24)
Jjz1
Naw) = Sl zne + 3 1450l 2150, (25)
Jjz1
j
Nufw) = Saulls, + S 2|4l (26)
jz1

Then let X7 be the Banach space

1

X = {ue C(-T.7), B} (R)); lullxz < 00}, where |fuxy = ) Nin(u). (27)

3. Linear estimates

In this section we present some estimates associated to the solution of the linear IVP

{&gu +i0%u = f(x,t),

w(z,0) = () (x,t) € R x R, (28)

Let
U (1)) = / EEHE) 36 g

be the solution to the linear homogeneous problem associated to (28) (with f = 0). We will also make
frequent use of estimates for the retarded operator I defined by

t
1) = [ Ule= )5 (29)
0
Thus the solution of (28) can be written as

u(t) = U(t)o + I(f)(?).

In order to simplify the notation, we employ the following definition as in Molinet and Ribaud [15].

Definition 3.1. We say that a triplet (o, p,q) € R x [2,00]? is
(1) 1-admissible, if and only if,

1 2 1 1 1 2
O‘apqufaoov2 OT‘p€4,OO,qE2,00,7—|—*§77Oz:7—|—7—7,
( )= (5 ) [4,00) [2, 00] 2 t753 T2
(77) 2-admissible, if and only if,
1 1 1 3
2<p,g<oo, —+-<—-a=-+-—-1
poq = 2 P oq
(7i7) 2*-admissible if, and only if, it is 2-admissible and 4 < p < oo.

3.1. Linear estimates for the free and the inhomogeneous evolutions.

We first list the smoothing effects and Strichartz estimates obtained by Molinet and Ribaud in [15]
interpolating previous results of Kenig, Ponce and Vega in [5,6].

Lemma 3.2. Let be (o, p, q) €ER x [2,00]2 and 0 < T < 1.
(i) If («, p, q) is 1-admissible, then

IDZU0¢ N rpre, S lollz2, ¥V € SR). (30)
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(ii) If (e, p, q) is 2-admissible, then
[TzU0¢lprs S92, Vo € SR). (31)

(iii) If (o, p, q) is 2*-admissible, then

=

_L
I1DZU@)P pra ST 27(|¢llL2, Vo € S(R). (32)
Proof. See [15], Proposition 2.3. O
Note that the estimate (i) in Lemma 3.2 generalizes the classical Kato’s estimate

1
1Dz U)o r2, < 191l 2-

We also observe that Lemma 3.2 does not cover the triplets (—s,2,00), s > 1/2, since they are not
admissible. These triplets were covered by Kenig, Ponce and Vega who proved the following L? maximal
function estimate:

Lemma 3.3. Foranys>1/2 and 0 <T <1, it has
1T L2 ree S 1915 - (33)
Proof. See [7], Theorem 3.1. O

Making use of the so-called Christ/Kiselev Lemma [4], Molinet and Ribaud deduced the following retarded
estimates from the above nonretarded ones.

Lemma 3.4. Let (o, a0) € R?, (ry,73) € Ri and 1 < p1, q1, P2, g2 < 00 be such that, given ¢ € S(R),

1D U@l oo ST ISl 2 (34)
1DZ2U @)l 2 po2 S T72(|6l| L2 (35)
Then for all f € S(R?),
12 LD pgerz S TN o2 (36)
2 (O] A e T (37)
provided
min(p1,q1) > max(p2,G2) or (g =00 and P2, G2 < 00), (38)
where Po, Go are defined by i =1- 1 and é =1- l
b2 P2 a2 q2

Proof. See [15], Proposition 2.7. O
Corollary 3.5. Forany0<T <1,
1
IDZ TN ez < 1Ntz

Proof. It is enough to note that the triplet (0,4,4) is 2-admissible and the triplet (%, 00, 2) is 1-admissible,
and apply Lemma 3.4 with oy =0, p1 =1 =4, ae =1/2, ps =00, g2 =2. U
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We close this subsection with the following estimate not covered in Lemma 3.4:

Lemma 3.6. Forany0<T <1,
oo < .
||8:z[(f)||LI L2 = HfHLiL?T

Proof. We refer to [7], Theorem 2.3. O

3.2. Linear estimates for phase localized functions.

Here we are going to follow the idea from Molinet and Ribaud in [16] to obtain linear estimates for phase
localized functions. We begin with the version of Lemma 3.2 for phase localized functions.

Lemma 3.7. Let ¢ € S(R), (a,p,q) ERx [2,00]%, j €EZ and 0 < T < 1.

(i) if (o, p,q) is 1-admissible or 2-admissible, then
1U(#) &5 @llpra <2770 25 @l 2
(i) If (o, p, q) is 2*-admissible, then
1U) 25 6l s S TT 302799 A; ) 2.

Proof. Let ¢ € S.
(i) Using Lemma 2.2 and the fact that supp A; C {&: 2771 < |¢] < 2771} we have,

U1 A6l .z 13 = 1U®)D;*DE A8l p 1 < 277 DU () A8l 1o 10 -

Since

DU @) A0l rpra, ~ [T*U() A9l 12 1e

the required estimate follows from Lemma 3.2.
(ii) It follows from the same ideas of item (i). O

Now we give an estimate involving the operator Sp.
Lemma 3.8. I[fs>0,p>2and1<q<p<oo, then
1SeU () D38llrp s, < T 410 L2
Proof. From Hélder’s inequality we deduce that

pP—gqg
1S0D3U (06l 21 < T7 S0PV 1o -

Using now Sobolev’s embedding and prope}ties of the operators Sy and U (t) we see that,
1
IS0 (D3l 1 < 1D5*SaU (610 12 < 1506l 12 12 < TF]1S0b 2.

where r > % — %. Thus the lemma is proved. [J
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We now present the phase localized estimate for the maximal function in L2.
Lemma 3.9. Given ¢ € S(R) and 0 <T < 1, it holds
1U(t) 85 62z S 220 25 61112 (39)
Proof. See Molinet and Ribaud [16], estimate (28) in Proposition 4. [
The phase localized version of Lemma 3.4 reads as follows.
Lemma 3.10. Let (o, a0) € R?, (r1,15) € ]Ri_ and 1 < p1, q1, p2, g2 < 00 be such that, for each ¢ € S(R),
U@ 4580 o g ST 277|456 12, (40)

IU#) A58l pr2 a2 S T2277°2[| A6 2 (41)

Then for any f € S(R?),
HI(A]f)HL%OL% 5 Tr29—J%2 ||Ajf||Lg2L§?’

||I(Ajf)||[,p1 L4 5 TT1+T22_j(a1+a2) ||A]'f||L152L‘72a
x T x T

provided
min(p1,q1) > max(pa,G2) or (¢ = o0 and Pz, o < 00),
1 1 1 1
where Do, Go are defined by — =1— — and — =1— —.
b2 D2 q2 q2
Proof. From Lemma 2.2 we have
IDZEU () A; | e o S 27U () A8 ok pax s b= 1,2 (42)

Now we use the hypothesis (40)—(41) in (42) to infer that
IDEIUO A6 71 0 S T 402,
1D2U ) A p2 22 S T A9l 2
Now it is enough to apply Lemma 3.4. [
Corollary 3.11. Let0<T < 1. Then

g
(A5 M pgor2 S 27214, fll 2 -

Proof. First we note that the triplet (0,4, 4) is 2-admissible and the triplet (3, 00, 2) is 1-admissible. Then
we apply Lemma 3.7 to infer that

_J
1U0)A;0lp1 S [1450l2 and [[U()A;0llpge 2 S 27240 2
Thus, the result follows from Lemma 3.10. O

To finish, we establish the phase localized version of Lemma 3.6, which is not covered by Lemma 3.10.
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Lemma 3.12. Let0<T <1. Then

192 (45 )Moz S 143 gy 2. (43)
1A D)l perz S 2791515 2. (44)

Proof. The estimate (43) follows from Lemma 3.6 with A;f in place of f. The estimate (44) follows from
the fact that 0 ¢ supp A; joint with (43) and Lemma 2.2. O

Combining the previous estimates we conclude the following result.

Proposition 3.13. Let0 < T < 1. Then

1U@)uollxr S lluoll 1, (45)

1
2
B2

Proof. We note that (3, 00,2) is 1-admissible and (0,4, 4) is 2-admissible. Then the inequality (45) follows
from the fact that {U(t)} is a L?-unitary group, combined with Lemma 3.7 for (a,p,q) = (3,00,2) and
(o, p,q) = (0,4,4), Lemmas 3.8 and 3.9. O

4. Nonlinear estimates and proof of Theorem 1.1
To study the IVP (1) we use its integral equivalent formulation (10). Without loss of generality, we are
going to consider @ = § = v = 1 and then write
w(t) = Ut)ug 4+ I(2uPy 0y ([u?) — ikuly (Jul?) + ilul*u), (46)
where the operator I was defined in (29). Furthermore, we shall split I = I(2uPy0,(|[ul?) — ikuly(Jul®) +
ilu|®u) as
I =1, + I, where I); = I(2uPy8,(Ju|*) — ikuly(|u|’)) and I = I(iu|*u).

4.1. Nonlinear estimates

We consider estimates for the integral equation (46) in the functional space defined in (27).
Let P denote one of the following operators: Py or H — Ty,. Taking f = u and g = P, (Jul’) in (16) and
in (18), we can write

uP, (Jul*) = SouSo Py (Jul*) + (AT+1uSTP8x(|u]2) + Ampaxquy?)smu) : (47)
r>0

A;(uP,(Jul*)) =A;(SouSo Pox(Jul*))
+ 4% (Ar_wsr_gpaz(\uﬁ) + Ar_gpam(]u\Q)ST_2u> , (48)

r2j

respectively. Using again (16) and (18) with f = u and g = u, we can write

|u’2 = |50u|2 + Z (ArpruSia+ AppqwSyqu) (49)
r>0
Aj([ul?) = A;(1Soul*) + A; > (Ar—ouS,_sti + Ap_2uS, _ou). (50)
r>j

Now we are ready to estimate ||I||x,,.
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Lemma 4.1. Let0< T <1. Then
Ni(I) STNy (u)* + T% Ny (u)? Ny (u) + T2 Ny () No (u) N3 () + T Ny () N3 (u) Na(u)
+ T30 Ny (u) 5 N3 (u)Na(u) 3 + N (u)>No(u).
Proof. From Lemma 3.8 we have
|U(0)Souolls < T¥Souol 2, (51)
and then by Lemma 3.4 with ¢ = Sgug, f = SO(UPOI(|u|2)), as=0,pyo=qga=4and ry = i, we get

|Soll ez S T 1S0(uPay (ul*))] (52)

L

B

T

4
Using that Sp and P are bounded from L} ;. to itself (see Lemma 3.1 in [17]), and then Holder inequality,
Sobolev embedding and Littlewood-Paley decomposition, we infer that

TH|So (PO ([ul*)| 4 STHlullgs _l[@dull 2 S T%N: ()N (u)Na(u). (53)

%
Lx,T
From Minkowski inequalities and the boundedness of Sy in L2, we have
2 2
102l e 12 < TlSo(ul?u)l 2o rz < Tllulull e 2.

Now from Lemma 2.4, we get

TJul*ull e 12 S TlullZee g THUHZX)B%,1 < TN (u)?,
T B3
and then we have
S0lallpse 2 S TN (u) (54)
Therefore, by (52), (53) and (54) we get the estimate
IS0 2|l oo 12 S TN1(w)® + T3 Ny () Na () Ny (u). (55)

We are now going to estimate >, 2% HAjIlHL%oLg- Using identities (47) and (48), we deduce that

. . t
D22 AN ez S 27114, /0 U (t — 5)SouSo PO, (|ul”)ds|| ¢ 12

Jj=1 Jj=1

. t
J
4 Zzzmj/o U(t—s)ZAr_guSr_gPam(|u|2)d5\|L°T°L§

j>1 r>j

. t
2
4 Zzzmj/o Ut~ )3 Sraudy o PO (ful*)ds] e 2

J1 r>j

3
J
=3 S 2 A ez (56)
m=1

jz1
Since SyP3, is bounded in L2, we get from (17) and Sobolev embedding the estimate

J
S 2514l pserz S TUSouSo POl e 12 S TN (). (57)

Jj=1
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In order to treat > -, 2% HAJ‘ILQHL%OL%, we first use commutators to write
1 ~1
Ar_ouS,_3P0,(|Ju]*) = —Ar_ouDZ2S,_3PD g(\u| ) (58)
1 1 1 ~1
= [Dz, Ar,gu]ST,g)PDf (Ju|*) = DZ(A,_ouS,_3PDZ (Jul?)).
Since (%, 20, %) is 2*-admissible, we have from Lemma 3.7 that

1 2,
[U(t)A4; uoH 20 S T0275[|Ajuol 2 (59)

L9
T

Then using Lemma 3.10 with (a2, p2,q2) = (£,20,2?), Lemma 2.3 (with 8 = 0 and o = 1), identity (58)
and the Holder inequality, we deduce that

Zzz 1451120l e 2 <T70 sz > 1A 2uS, s PO ([ul)]| 2 20

19 LT
j=1 ji>1 r>j Lz™ L
1
T Y2 Y D)2, Ayl PDF ()| 39 3
Jj=1 r2>j r 0T
1 I ~3
+ T'10 222 .2102\\Ar_2u57,_3 DZ (Ju)? )HL%L%
i>1 r>j v Ly
1 o r ~1
T4y 210 -25||S, 3 PDZ (|ul’ )H § ||A,, 2ull -
r>1 Ly
< 1/2
ST\ D} ull s Mlullpz g ;2 A U|| s (60)
T

It remains to estimate > ;25 ¥ | A, uH 10 in (60). Given 0 < 6 < 1, we have by interpolation that
5L

Lz T

22 NA sy S5 (2Nl )

0
(2714l o2 )

1
r>1 T r>1
1-6 0
S (Toanly, ) (S21aalzs) (61)
r>1 ’ r>1

Then choosing 6§ = £ in (61) we obtain

U=

O

4
r g r
2% A, (}jzumrunLij) (§j2HAru||LgOLzT). (62)

r>1 r>1 r>1

Therefore, from (60) and (62) we get

J 1 1 9
Z 23 1451120l e 2 S T30 N2 (u) 5 Na(u) 5 Ny(u). (63)
j>1

Finally, we are going to estimate }_.-, 2%||Aj1173||L%0L%. To do that we use again the commutator
estimate in Lemma 2.3. First we write

~1
Sy _gul,_o POy (|u?) = — T_zum DZ A, _o(|u?) (64)
1 1 1 1
= [D2,8,—2ulPDZ A, _5(|ul*) — D2 (S,_ouPD3 A, _s(|ul*)),

—
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1

and then,
< 2 N2 2
S 2840 al e S D284, / (t = ) 3102, S, oul PDE A, y((u)ds]| e 12
7>1 7>1 r>]
1
+ Y 2b)a / (t— )3 D2 (S, 5uPD2 Ay (|uf))dsl| o0 2
j>1 r>j T
i i
= 222 ||Aj11,3,1”L§>9Lg + 222 ||Aj11,3,2||L§9Lg- (65)
Jjz1 Jj21
To estimate the first term on the RHS of (65), we use Lemma 3.10 with (g, p2,q2) (%,20, %),
Lemma 2.3 (with =0 and o = %) and Holder inequality to deduce that
~1
3 2

> 2414, il rp STH Y20 102, 8,2ulPDE A, a(ul)] 3y

j>1 j>1 r>j r =T
~1

T Y275 D2S, qul,0 1PDE A —a(uP)]| 1 19
’f‘>0 x T
1
<TZo 2
SThN) 325 1D2 4, ()] p (66)

r>1
), properties of S, and estimate (62), we find

Using decompositions (49) and (
w10+ A AwSia) ||L?L;§}

2 D2 A, ()l sy £3 252514 (S)]

r>1 Ly T r>0 T >r
<||S0U||L2L10H50UHL5 +225 HAIUH 10 HSluHLgL,??
>1 z T

w0 IS0l 12 e

ST 1S0ull 2 poe | Soull e 15 + D 23 5 1Al

1>1 LaLy
4
5

ST16 Ny (u) N3 (u) + Na(u)Na(u) 5 Na(u)

S}

and therefore, by (66) we have
j 13
> 22(|A;L sl e 2 S T30 Ny (u)Ns(u)Na(u) + T30 Ny () Na (1) 5 Ny(u)

Jj=1

(67)

To treat the second term on the RHS of (65), we use Lemma 2.2, Corollary 3.11, and the boundedness of

S,_9 in L%OL?C to get
% 2
ZHST 2uP Dz Ao (|ul )HL%L%

> o
j>1 ]>1 r>j
~1
b 2
<725, sull 2 1o [ PDE Ara(ful) 2
r>0 ’
r 2
SN3(u) Y 27| Ar(ful®)ll 2 S Na(u)Ns(u)
r>1 ’

Therefore, from (67) and (68) we obtain
Zzé ATy 5]l oo p2 < T30 Ny () N3(w)Ny(u) + T30 Ny(u)5 N3(w)Na(u)3 + No(u)Ns(u)?

Jj=21
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Finally, we analyse .-, 22 | A; L] oL First of all we use Minkowski inequality, the boundedness of
the group U(t) and Cauchy—Schwarz inequality to get

J 1 J 2
> 28|45l ez STE D 2% 41 w)l 2. (70)

Jj=1 Jj=1

Using (16) and (18) with f = u and g = |u|* and the boundedness of A; we have

7 J
S 2845wl 2 SISouSo(uP)lyz , + 30 S 2E A, suSe a(uP)z2

j>1 Jjzlr>j

I 2
+ >0 22 Ao (Jul )Sr—sullpz = lxa+la2+Dos.

j2lrzj

In order to estimate I3 1 + I2 2 we use Holder inequality, Sobolev embedding and (20) to get

2 J 2
Lo+ < uPllgs ISoulzs +D D 2814, sullys I1Sr—a(uf)lgs |

j>1lr>j
< 1 2 1 2 T
S T 0l s Na(w) + TH 2 37251 Ayl
r>0 '

TNy (u)2Ny(u). (71)

N

Next, we estimate I5 3. We use once again Holder inequality, Sobolev embedding and (20) to find

1 r 2 1 r 2
Ly ST |ullpeers 221 A (Jul)llps S TONi(w) Y 25| An(jul)ll s -
r>0 ’ r>0 ’

Now using (16) and (18) with f = v and g = u, Holder inequality and Sobolev embedding we get

1 T
I3 S TN (u) Z 22 ||Ar(|u|2)||Li .

r>0
S T%Nl(u){HSOUHLETHSOUHL:T +llall ez, > 28 1Avullza , }
r>0
< TNy (u)2Ny(u). (72)
From (70), (71) and (72) we conclude that
> 28145 Bl e 2 S TN ()2 Ni(u). (73)

J1

Gathering estimates (55), (57), (63), (67), (69), (73), we arrive to the result. O
In the next proposition we estimate the remaining norms.
Proposition 4.2. Let 0 <T < 1. Then

Ny (I) STNy(w)? + T3 Ny ()2 Ny (u) + T2 Ny (u) Na (w) N3 (u) + T Ny (u) N3 (w) Ny () (74)
+ T30 Ny (u) 5 N3 (u)Na(u)3 + Ns(u)?Na(u),

form =1, 2, 3, 4.
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Proof. The estimate for Ny(I) is in Lemma 4.1.
Given (p,q) € { (00,2), (2,00), (4,4) } we have from Lemmas 3.3 and 3.8 that
1
1U(#)Souoll e s < T |[Souol2- (75)

Then by Lemma 3.4 with (p1,491) = (p,q) and (p2,q2) = (4,4) we get

1
1Sol1llpre, ST ||50(UP3x(|u|2))HL% - (76)
z, T
Therefore by (53) we find
1S0T1ll 259, < T2 Nu(u) Na(u) Na (). (77)

0
Let us now estimate -, 2?]||Aj11HL§L%’ for (p,q) € {(00,2), (2,00), (4,4) }. As we did in (56), using
(47) and (48) we write

ZQ%HA-I | LpLa <Z2%HA» 1tU(t—s)S uSo P, (|ul*)ds|| p a
JALE Ll ~ J 0 04005 U Ly L7,

j>1 j>1
2 t
4 ZQ(JJHA]-/ Ut~ )Y AryuS, s PO, (fuf*)ds] 5 15
7>1 0 >
27 t
+ quJHAj/ Ut =) Y Sr-aulds o PO, (ul*)ds] 2 s
3>1 0 >
3 )
25
= Z 22 a HAJ'ILm”LI;LqT' (78)
m=1j>1
From Lemmas 3.7 and 3.9 we infer
J
IIU(t)AjuolngL; S 22| A uoll L2, (79)
1
IIU(t)Ay‘UOIILgT S T[[Ajuoll 2. (80)

Then from Lemma 3.10, remark in (17) and the boundedness of Sy P, in L3 we deduce that

IS

2, 1
Y207 Al g e S THISouSo P (|ul”)|

i>1 L

8 wl

,T

2
< T)Soull e 1150 PO ()] 2 < TN (u)?. (81)

Employing Lemmas 3.7 and 3.9 and choosing (a2, p2,q2) = (%,20, 29—0) in Lemma 3.10 (by a similar
argument as in (59)) we find

25 L 2 2
> 2% 14502/l e e ST > 210 ) A, _ouS,_3 P, (|u| )“L%L%' (82)
jz1 Jj21 r2j z =T
Therefore, combining the above estimate with (60) and (62) we conclude that
2j < 1/2 3r
> 2 ¥4 halinrg STHIDY?ulys lulizsg Y2 ¥ 4wl
j>1 r>1 =T

<TT0 Ny(u)5 Ny(u) 5 N3 (u). (83)
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0
In order to estimate 3, 2% HAjfl,i%HLgL‘,}: we first split it as in (65):

1

1 ~1
S 274, Ligllpps S 274, / U(t—5) > [DZ, 8w 2ulPDF Av(|uf*)ds|| 2 1

i>1 j>1 r>j
1 ~ 1
5 5 2
#0218, [ U9 Y DAS-auPDE A, sl g
j>1 r>j
27 25
=) 2% 141310l pps + > 27 145013202 L9 - (84)
i>1 i1

From Lemmas 3.7 and 3.9 combined with Lemma 3.10 with (az,p2, g2) = (%, 20, 29—0) (see estimate (59)),
we deduce that
27 1 g 1 ~1 9
Y 29[ AiLaalprg ST®™ Y 210 ) |[DF,S,—2ulPDZ Ar—s(lul)|| 29 2. (85)

11
i>1 >l >y Lg? Ly

The expression on the RHS of (85) was already treated in (66)—(67). Therefore

9
5

2 13 1 1
> 2% 14511310l pppa, S T Ni(u)Na(u)Na(u) + T30 N3 (u) Na(u) 5 Na(u)® .

i1

(86)

To finish, using Lemmas 2.2, 3.12 (with (p,q) = (00,2)), Lemma 3.10 (with (p,q) = (2,00) or (p,q) =
(4,4)) and the boundedness of S,_y in LPLI., we get

~ 1
27 1455320l e e S 2537 ||S,_uPDZ A 2 ([l p1z2 - (87)
=T

Jj=1 J>1 r>j

And then, from the estimate in (68) we see that

27
D 29 1ALzl rpr, S Na(u)Na(u). (88)
>1

From the above estimate and (86) we deduce that

SO A Tusl s < TH N () Na(u)Na () + T4 No(u)h N () Na(w)® + No(u)Ns(u)®.  (89)

i>1
As in (73), a straightforward calculation shows that

No(L) < TINy (u)2Na(u), m=2,3,4. (90)
Thus the proposition is proven. [
4.2. Proof of Theorem 1.1
The goal is to establish local well-posedness for the Cauchy problem associated with (1) in the Besov

1
space Bs ’1(R).
Given ug in B’ (R), we look for a (unique) solution in the space X7 (0 < T' < 1) defined in (27). Let

—

B(u)(t) = U(t)uo + I,
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where I is defined in the RHS of (46). Hence, by gathering Propositions 3.13 and 4.2 we see that

|2y Sluoll 3, +TNi () + T Ny (u)? Na(u) + T3 Ny (u) No (u) N3 (u)
2

+ T Ny () Ny () Na (1) + T30 Na ()% Ny (1) Na () 3 + Na(u)*Na(u),

and thus, since 0 < T < 1 we get,

| 8(w)llxy <Clluoll 34+ C(T+TF+ T2 +T% +T% + 1)|ulk,
BQ
<Clluoll 3.1 +Cllullfy (91)

2

1
Consider § = (40)_% and uy € Bg’l(R) satisfying ||uol| 11 < J. Choosing a = 4C'|uy]| 115 We have
B’ B’
from (91) that

2 2

a
|2, < § +Ca’ <a,

for all v € X¢. That gives us #(X$) C X¢.
An analogous approach leads to the estimate

19(w) = (v)llxy < Clllullz, + Il ) llu = vlxg-

Therefore,

1
| 2(w) = 8(0)lxy < 5 llu = vllxy.

for all u,v € X§. The remainder of the proof follows from a standard argument.
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