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Abstract. We study the nonlinear Schrodinger equation with initial
data in Z3(RY) = H*(R%) N LP(R?), where 0 < s < min{d/2,1} and
2 < p < 2d/(d — 2s). After showing that the linear Schrédinger group
is well-defined in this space, we prove local well-posedness in the whole
range of parameters s and p. The precise properties of the solution
depend on the relation between the power of the nonlinearity and the
integrability p. Finally, we present a global existence result for the
defocusing cubic equation in dimension three for initial data with infinite
mass and energy, using a variant of the Fourier truncation method.

1. INTRODUCTION

It is well-known that the Schrodinger equations
iug + Au~+ f(|u])u =0, (1.1)

where f : RT — R, admit the formal mass-invariant
M(u) = / luf2dz.
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For initial data in L2-based spaces, such as the Sobolev spaces H S(Rd), the
local well-posedness of (1.1) and the problem of global existence versus blow-
up in finite time of solutions (in which the mass of the initial data often plays
a very important role) are now relatively well-understood for large classes of
nonlinear potentials f(|u|). On the other hand, for initial data ug & L?(R?),
which we refer to as having “infinite mass”, results in the literature are
rather scarce. One of the first works in this direction is due to Zhidkov: in
[21], the author studied the well-posedness of the Gross-Pitaevskii equation

iug + Au— (|1 — [u)u =0 (GP)

in the space
XYR) = L®°(R) N H*(R).

This space is specially suited to treat cases where (GP) is complemented
with a non-zero boundary condition at infinity (v — =+1). This situation
arises naturally in several physical contexts described by (GP), such as the
study of dark solitons in nonlinear optics ([17]) or the propagation of solitary
waves in Bose condensates (see for instance [20] and the references therein).

The results in [21] were extended in [11] (see also [13]) to higher spatial di-
mensions through the following generalizations of X! (R), coined as “Zhidkov
spaces”:

X*RY) = {u e L®RY) : Vu e H 1R}
Also, in [1], the nonlinear Schrédinger equation

iur + Au~+ Mu|u = 0, (NLS)

where A = *1, was considered with initial data of infinite-mass ug = adg+ g
for a € R\ {0} and @ a regular function. In particular, local well-posedness
was proved for @g € L*(R?%) and o < 2/d.

In [10], we showed the local well-posedness of (NLS) for initial data in

Z)(RY) = LP(RY) N H'(RY)

for 2 < p <20+ 2andd > 2, and for p > 20 + 2 in dimensions d = 1 and
d = 2. Note also that, in [11], the well-posedness of (NLS) was addressed in
XFk(R9) for s = k integer, k > d/2. Under this assumption, the space X* is
an algebra and the local existence theory follows from standard arguments.
In the present work, we extend these results to rough initial data in

Z5(RY) := LP(RY) N H*(RY),
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under the conditions
2d
0<s<min{d/2,1}, 2<p<2":= T o5 (1.2)
—2s
Concerning the p-endpoints, notice that when p = 2, Z5(R?) = H*(R?)
and, when p = 2%, Z5.(R%) = H*(R%). The local well-posedness of (NLS)
for initial data in these spaces has been treated in [6] (see also [5, Section
4.9]). Our aim is to fill the gap between both results and to understand the
different features of the dynamical flow depending on p.
The first essential step is the solvability of the linear equation in Z:

Theorem 1.1. Let s and p as in (1.2). The Schrédinger group {e**}icr
acts continuously on Z;(Rd). Moreover, for ug € Z;(Rd),
it A
e uollzy < (1 +[t])lluol z;- (1.3)

We now state the local existence results for (NLS). To clarify, we say
that u is a solution of (NLS) with initial condition ug if it satisfies the
corresponding Duhamel formula

. t .
u(t) = Py + i)\/ ez(t_T)A‘u(T)‘UU(T)dT. (1.4)
0

Motivated by the usual scaling argument, we will only consider H*- subcrit-
ical cases:

o<

. (1.5)

When we apply a fixed-point argument to (1.4), the main difficulty is the
control of the L LA norm, which is not in the scope of the usual Strichartz
estimates. There are two main approaches to tackle this problem. The
first consists in proving that the integral term in the Duhamel formula,
u(t) —ePug, is in LYLY, for an admissible pair (g,7) (in the Strichartz sense
(3.1)). However, as in [10], this strategy only works if p < 20 + 2:

Theorem 1.2. Let s and p as in (1.2), o satisfying (1.5), p < 20 + 2
and ug € Z;(Rd). Then there exist T = T(|[uo|z;) > 0, admissible pairs
(gj,75), j=1,2 and a unique solution

2
u € C([0,T), Z3(R") (1) L%((0,T), B (R7))
j=1
to (NLS) with initial condition uw(0) = ug. Moreover,
u— e"®ug € C([0,T], L*(RY)) N LT ((0,T), L™ (RY)). (1.6)
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Observe that (1.6) represents a gain of integrability through the nonlinear
term. In other words, the large tails of the solution evolve linearly, while
the nonlinear effects are localized in space. As it will be seen, this property
is a direct consequence of the classical Strichartz estimates, which are in
themselves an embodiment of gain in integrability. For p > 20 + 2, this
feature is no longer available and we follow the second approach, which
consists in using directly (1.3) and then reach an admissible L{L" at the
expense of s derivatives.

Theorem 1.3. Let s and p as in (1.2), p > 20+2, and uy € Z]‘j(Rd). Then
there exist T = T(|luol|zs) > 0, admissible pairs (g;,7;), j = 1,2,3, and a
unique solution
3
we C(0,7], Z3RY) () L% ((0,7), B (RY)
j=1
to (NLS) with initial condition u(0) = ug.
Remark 1.4. Observe that, in the above theorem, o satisfies (1.5), since

P d 4

= —1 1 .

ST S d—2s S d—os
Remark 1.5. In fact, the proof of this theorem naturally applies to the case
s = 1, thus, extending the local well-posedness theory in Z; (Rd) developed

in [10].

Finally, we consider the global existence problem. When compared with
the classical theory in H*(R%) spaces, two main difficulties arise: first, the
linear group is not bounded in Z;(Rd) uniformly in time, which means that
global results for small data are not straightforward. Second, the conserva-
tion laws for the mass M and the energy

E(u) = 1/ |Vu|?dz — A lul" 2 dx
2 Jpa o+ 2 Jpd
are not available in Z5(R%). In [10], a global result in Z ,(R?) was obtained
for A = 1 and o small: even though the mass is not an available quantity,
one may still derive a corrected mass estimate by throwing away the large
tails of the solution. Since the energy is well-defined in Z! ,(R?) (and
thus conserved), this estimate is sufficient to apply a Gagliardo-Nirenberg
argument. The case A = —1 is trivial, as the energy provides a direct bound
for the 21 ,(R?) norm. It is interesting to notice that, in this case, the
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nonlinear evolution satisfies stronger bounds than the linear one, where a
growth of the L7T2(R?) norm is observed.

Our goal is to understand whether a global existence result is possible
when neither mass nor energy are well-defined. To that end, we sought
inspiration in the Fourier truncation method developed by Bourgain ([3],
[4]) for the defocusing case A = —1, where the a priori bound provided by
the energy conservation, together with a nonlinear smoothing effect, allows
one to extend the global existence result from H'(R?) to H*(R?), for s close
to 1. The technique has been refined in various papers ([8], [9], [7]), where
one employs several multilinear estimates on Bourgain spaces. Since these
refinements deeply rely on the conservation of the mass, we have decided to
follow the more robust arguments of Bourgain instead.

In our context, one may consider the problem with either a lack of regu-
larity (that is, in 23, ,(R?), s < 1), or with a lack of integrability (in Z) (R9),
p > o +2). The first direction seems quite similar to the H*(R%) case (but
not entirely trivial). We therefore focus on the second possibility. Following
the heuristics of the Fourier truncation method, the key property is a non-
linear “smoothing” estimate which, in the context of integrability, is akin to
(1.6). This argument, which suggests that global existence should be valid
for p close to o + 2, is made concrete in the following particular case:

Theorem 1.6. Set 0 = 2 and A = —1. Then (NLS) is globally well-posed
in Zy(R3), for any 4 <p < 9/2.

The methodology is in fact quite general and similar results should be
achievable in the general case (at least for o even). This should be pursued
in future works.

Remark 1.7. In the classical H* space, global existence has been obtained
through concentration-compactness/rigidity arguments in very specific cases
(see, for example, [12, 14, 15, 16, 18, 19]). Using persistence arguments (as
in [10, Proposition 3.4]), these results should be easily extendible to Z; (RY).

The rest of this paper is organized as follows: in Section 2, we introduce
some notations and study the linear problem. In Sections 3 and 4, we prove
the local well-posedness of (NLS) for p < 2042 and p > 20 + 2, respectively.
Finally, in Section 5, we prove Theorem 1.6.

2. PRELIMINARIES AND LINEAR ESTIMATES

We denote the Fourier transform by F. In our analysis, we will use various
Sobolev and Besov spaces, which we now recall for the sake of convenience:
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e the homogeneous Sobolev space over L"(R%) of order s € R,
WerRY) = {f € S'RY)/CRY) : FTH(IEFS) € IR,

where C(R?) is the set of all constant distributions;
e the classical inhomogeneous Sobolev space of order s,

werR:) = {f € SRY : FU(1+[E)2Ff) e 1R}
e for s e R, 1 < p,q < oo, the homogeneous Besov spaces,
. . 1
B;q([[gd) = {f € S'(R)/C(RY); HfHB;»q = (Z2qﬂs\|Ajf\|%p)q < 400 }’
JEL

where Aj; is the Littlewood-Paley projection onto frequencies ~ 27
e the corresponding inhomogeneous Besov spaces,

Byd(RY) = {f € S®RY : Iflgo = I150f s

+ (D218 f117s)

Jj=1

Q=

<+oo},

where Sy is the projection onto frequencies < 1.

In the remainder of this section, we study the linear problem for initial
data ug € Z, (RY). By the Sobolev injection, we have

H*(RY) — Z5(RY) — LYRY), p<q<2n. (2.1)
Following the ideas in [11], we introduce the following space:

Definition 2.1. Given n € N, s > 0 and 1 < p < +o00, we define the
function space

Z}[Ds,ern] (Rd) — ﬂ Z; (Rd)
a€ls,s+n]

endowed with the norm

|-l issem = sup || ||zg
P a€[s,s+n]

The next result states that any element in Z; can be canonically decom-
posed into a regular slowly decaying part and a rough localized term.

Lemma 2.2. Letn € N and 2 < p < 2*. Then
Z;(Rd) ) HS(Rd) + Z}[f,s—i—n] (Rd).
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Proof. Given g € Z; (RY), we define g; = 9 * g, where v is a bump function
localized in the unit ball. We claim that ¢; € ZZ[)S’SJFR] (RY). In fact taking

a € [s,s +n] and writing @ = s+ k, 0 < k < n, we have that
ID%g1 |2 = | D Dgll 12 < Nlgll s

and
lgallze < llgllze
by Young’s inequality and the fact that ¢ € S(R?). Therefore,

lg1ll gis.stm = sup  [lg1llzg < llgllz;-
Zp a€ls,s+n] P P

It remains to prove that g == g — g1 € H*(R?). In fact

lg2llzrs = 17°9(1 = )2 S 1191 = )l 2 + (1179 (1 = ¥)]| 2.

Observing that LY g bounded,

HE
(1-9) H
€] e

lg2llzs < [11€°G ]l 22 + 1€l 2]11 = iz~

< lgllz;-
Finally, the embedding
HS(Rd) + Z][?s,s-i-n] (Rd) SN Z;(Rd)

is a direct consequence of (2.1).

(2.2)

(2.3)

O

Proof of Theorem 1.1. Let up € Z5(RY). From Lemma 2.2, taking
n = 2, we can decompose ug as ug = vy + wp, with vg € H*(R?) and wy €
Z,[)S’S+2] (RY). We set u(t) = e*?ug and introduce v(t) = u(t) — wo. Then v

satisfies the linear IVP

10w + Av = —Awy, d
{ o(, 0) = vo(2) (x,t) € R* x R,

and .
v(t) = Py — z/ e 1A (Awg)dr.
0

Notice that v(t) € H*(R%). Indeed,
t
lo(®)llzzs < lle™ ol 75 +/ €7 (Awg) | 7= dr
0

< llvoll s + (¢l ([lwoll 72 + lwoll go+2)

(2.4)

(2.5)
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< lvollzs + 2[t[[|woll gisis+2
P
since s < 2. Hence, by Lemma 2.2,
u(t) = v(t) + wo € H(RY) + 2l FH(RY) — 2Z5(RY)
and
lu®)llzg < lv(@)llms + [lwol| zis,5+2
= l[vollas + 2[t[lwoll gsss+ar + [lwol| zis,s+2
S (L [t lluoll 2.
Next, we show that {¢"“};cr defines a continuous group over Z3(R%).
From (1.3),
e Z5(RY) — Z3(RY)
is a bounded operator and we only need to show, for ¢ € Z; (RY), that
o lleitA Gl
limfle*%6 — 9]1z; = 0. (26)

Consider a sequence (¢,,) € H*(R?) such that ¢, pos ¢. Then
p

€26 = dllz; < 11" (@ = @)l z; + [|€"0n — Sullz; + 160 — 6 5-
Given € > 0, we choose n such that [¢, — ¢[|zs < € and for any [t| <1,
1€"2(6 = ¢n)ll 25 S €
(by (1.3)). By continuity of {e?**},;cr over H*(R?), for ¢ small enough,
HeitA(b - ¢HZ§ Sx HeitA(ﬁn - (lanHs + 2e 5 3e. .
3. LOCAL WELL-POSEDNESS FOR p < 20 + 2

We begin this section by stating some Strichartz estimates in Besov spaces.
For the proof of these results the reader may refer to [5]. As usual, we say
the pair (q,r) is admissible if

2 1 1

2_d(z_ =

q (2 r)’
2d/(d — 2 d>3

2<r< /( ) - and, if d = 2,7 # oo. (3.1)
00, d=1,2

Lemma 3.1. Given s € R and (q,7), (v, p) admissible pairs, the following
properties hold:
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(1) Homogeneous estimate:
Vo € HURY), [l o g ety S ol s ~ [l

(2) Inhomogeneous estimate: Let I be an interval of R (bounded or not)
and ty € I. There exists a constant C' independent of I (and of

to € T) such that ¥g € LV (I, B3*(RY)),

t
H / ei(t—r)Ag("T)dT‘
to

Both estimates remain valid by replacing the Besov spaces by their homoge-
neous counterpart.

L) ol z.ey2)

Throughout this section, we assume that (1.2) holds and that (q1,71),
(q2,72) are admissible pairs that will be fixed later. Before proving Theorem
1.2, let us define the function spaces where the solution of (NLS) will be
obtained. Define, for T' > 0,

So == L®((0,T), L*(R%) N L™((0,T), L™ (RY)),
S = L>((0,T), H*(R*))NL™((0,T), BS*(RY)NL2((0,T), B2 (RY)) < So
and, given ug € Z;(Rd) and M > 0,

E = {u € LOO((O,T),Zg(Rd)) N Lq2((0,T),Bﬁf(Rd)) :
lulle = lullzoe o)) + lu = *uolls, < M}, (3.2)

Proposition 3.2. Letuy € Zg(Rd) and M > 0. Setting d(u,v) := ||[u—vl|s,,
(€,d) is a complete metric space.

Proof. Let us first notice that for u,v € &,

itA eitA

[l = vl[sy < [lu = e™Puolls, + [lv — ™ Tuol|s,

S llu— e Pugls, + [l — e Puolls, < 2M

and d is well-defined over &.
Consider a Cauchy sequence (uy)nen in €. Since

tAuo €S, — Sy

Up 1= Uy — €
and, for fixed ¢ > 0,

|vm — vnllsy = d(tm, un) < € for n and m large enough,
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it follows that (v, )nen is a Cauchy sequence in Sp. Thus, there exists v € Sy
such that .
Vp = Up — € Pug ? v. (3.3)
0

As (vn)nen is bounded in S, applying [5, Theorem 1.2.5], we see that v € S
and ‘

|v]ls, < liminf|ju, — e ug|s,. (3.4)
Since ug € Z;(Rd) < H*(R%), we have from Theorem 1.1 and Lemma 3.1
that

e"Pug € L=((0,T), Z5(RY)) N L=((0,T), B5A(RY)).

Hence, setting
itAu

u=v-+e 0,

we conclude that d(uy,u) — 0 and
ue L*®((0,T), Z5(R%) N L®((0,T), B52(RY)).
Finally, for each ¢ € (0,T), since u,(t) — u(t) — 0 in L2(RY), u,(t) — u(t)
in LP(RY) and
lulle = [lullzoo ((0,7),20) + IIV]]s,
< liminf (|lunl| oo (o.1),10) + lvnlls,) < M. O

Proof of Theorem 1.2. Consider the integral operator
t
®[u](t) = ePug + i / DA () Tu(r)dr, 0<t<T,u€ck.
0

We show that ® is a contraction in (£,d) for M = 2[jug||zs and T' < 1 to be
fixed later. With this choice, for any u € E and (v, p) admissible,

HUHL“I((O,T),B,S,’Q) < lu— eitAUOHLw((o,T),B;’Q) + ||€itAUO||Lw((07T)7B;vQ)
S M+ (1+T)luoll g S M. (3.5)

~

Step 1. We begin by estimating

@l (t) — ¢*2uolls, =:HAJ/ti“‘7”¥u<fﬂ”u@ﬁdf\s

e (3.6)
0

Applying Strichartz estimates,
it A
[{ul(6) — Xuols, < Ml g oty + 170l oy ey (B7)
1

We will treat these two norms separately. The estimates for the second follow
closely the H? theory. We include the steps for the sake of completeness.
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Control of the nonlinear term with s derivatives. Following [5, Propo-
sition 4.9.4], we infer that

el ull go.2 S MlullZa lull g5.2- (38)

"1

where a = or17}/(r1 —r}). Choosing
d(o +2) 4(o +2)
Tl - 7 ql - 77 a1\
d+ so o(d— 2s)

we have (q1,71) admissible and

o drq _d(a—i—?)_a
Yo d—sry ~ d—2s

Thus,

IIIUI"uHBs2 N HUH‘;% (3.9)

and

1
o ) < (o+1)qy >q7'
1wl 8 % [ o).

A simple computation shows that ¢; > ¢} (c+1) is equivalent to the condition
o <4/(d—2s). By Holder,

q1fq'1(a+1)

o AT 7] G . (3.10)

g
[l uHqu ((0,7), B“) ~ L91((0,T),B57)

q1—q} (o+1)

ST aa Moth
Control of the nonlinear term with zero derivatives. First, notice

that

+1
|HU|0U”L~/((0,T),LN) S ||u”2'y/(0+1)((07T)7Lpl(o+1))'

Case 0 > 2s/(d — 2s): Define
dro p r5

TQ:d—rgs’ p To+1

In particular Bg?(R?) — L' (R?). We require that

2 <7r9,p2 < (with 7o, p # oo if d = 2).

2d
(d—2)*
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For d > 3, these conditions can be met if

e {l_ﬂ ;}<min{1_f ;@Q)}
27 T4 200+ 1)) 2 do+i\z " alS

which holds iff o > 2s/(d — 2s). An analogous computation yields the same
conclusion for d = 1,2. This allows us to consider the admissible pairs
(g2,72) and (7, p). Therefore,

T
+1)
Ml o) S Wl by sy S (] I3 )7

By Holder inequality,

\\H

_~(o
. < T ot 3.11
Il "l g 0.1y, S 2 G o, Be2) (3.11)

’
22— (o+1)
ST e’ Mo

if g > (0 +1)7'. A simple computation shows that this condition is equiv-

alent to o < ff_rgi, which holds.

Case 0 < 2s/(d — 2s): We choose 1o = p' =2 (p =2, g2 =y = +00 and
7' =1). Noticing that

2d .
=r
d—2s %
we obtain by interpolation for some 0 < 6 < 1

p<L204+2<

el oy = Null 2oz S Hlull o llull 27 S HuHLPHu”Bs2

and

T
O(c+1 (1-0)(o+1
Il oy amesy 5 [ I o)) GVt

U+1)
i I L Ba2)

+1)
STlu HLU
§TMU+1'

Step 2. By inequalities (3.11), (3.12) and (3.10), we conclude that, for
some § > 0,

~

|®(u) — e Puglls, ST M. (3.13)
Next, using Theorem 1.1 and the Sobolev embedding, we infer that
19 ()| Lo ((0,1,L7) < Il u0l| oo 0,1y, 25) + 19 (1) = € Pl oo 0,7, 11%)
< (14 T1)uollz; + [P (u) = e Puolls,
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< (141T) Juollzg + 7M.

Choosing T' > 0 sufficiently small (depending exclusively on |[uo| zs), we
conclude that

®(u) € C([0,T], Z5(RY)) N LI((0,T), BS*(RY) — &€
and
[@(u)lle < M.

Step 3. To show the contraction estimate, take u,v € £. Using Strichartz
estimates, we find that

AD (), B(0) < llul”u — (017l o) 7t

Since
u|7u = |v|7v| < (Ju]” = [v]7)|u —v],

it follows from Holder’s inequality that

d(2(w), 2(v)) < [[(lullze +lolIZ)llw = vzl o o 7y

Hence,

1

1 _ o+l
d@(w), @) STH % (Nl oz 22 + 101500 0 2, ) )

Therefore, for T' = T'(||lugl|z;) small enough, the mapping ® : & — £ is a
contraction and, by Banach’s fixed point theorem, ® has a unique fixed point
win €. Since u = ®(u) € C([0,T], Z5(R%)), the result follows. O

Remark 3.3. A simple way to understand the restriction p < 20 + 2 is to
notice that, when one applies a Strichartz estimate on the Duhamel term,

| [ S utmirutrian

one needs p < p'(0 + 1) to ensure integrability in space. Since p’ < 2, the
condition follows.

(0L S Mel®ull v 0.y, 0y
o+1

= ||u”L’y (e+1)((0,T),LF' (1))’
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4. LOCAL WELL-POSEDNESS FOR p > 20 + 2

In this section, we treat the remaining case p > 20 + 2. Note that this
restriction implies that

P 2s
<P 1< .
D R

Proof of Theorem 1.3. Given admissible pairs (gj,7;),j = 1,2,3, (to be
fixed later on), define

(4.1)

yi={uec(o,m, ;@) n () 22(0,7), BEARY)) -

.

o L

J

||U||y = ||u||L°°((O,T)7LP) + Z ||uHqu((0,T),Bi;2) S M} (42)
7=1

endowed with the natural metric d(u,v) = ||[u — v||y. It is clear that (¥,d)

is a complete metric space.
As in the previous section, we consider the map

Blu](t) = ¢Bug + iA /0 N (4.3)

and prove that ® : ) — Y is a contraction, for M = 2||ug||z; and T" small.
Step 1. Taking the LP norm in (4.3) and using Theorem 1.1, we find that

1R[] e < lle™uollze + IAI/0 "2 ()| 7u(r) | o
t
S (L [E)]uoll 2 +/0 (L + [t = 7Dllu(r)7u(r) |zgdr (4.4)

T T
S+ (ol + [ NG i+ [ llu@ruo)l ).

By [5, Proposition 4.9.4], we know that

ulull gs = lulull gs2 < NullTallull 55,2,
2 T1
where we choose
2p
a=p, r =
p—20

Observe that with this choice, we have r1 < p < 2*. Therefore,

T T
| e ul e 5 [ o) gr
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1
S T el o 0,0, 0 10l pan 0.1y, 522y

where the pair (q1,71) is admissible.
We now focus on the second term in (4.4). Observe that, for o > 2 (see
[2, Theorem 6.5.1]),

. . 1 1 S
2/md 0,2 /md d _
BrA(RY) — By *(R) — LP(RY), rE
Hence, by interpolation, under the condition
d?"g
)y <p= , 4.5
plo+1) <p=— (4.5)
there exists 0 < 6 < 1 such that
1 0 1—40
0,120 (4.6)

ple+1) p  p
and we get

o O(c+1 1-0)(oc+1 0(c+1 1—0) (041
sy S Tl Dl G S 35740 a2+,

Lp(o+1) P Bi,22

In conclusion, for (g2, 72) admissible,

T T
g 0(c+1 1—0)(o+1
/0 la(7 e < Tl 20 .oy /0 ) 21

g2 —(1-0)(o+1) _
ST e 8250 SO

>((0,1),LP) N Laz ((0,1),B557)
provided that g2 > (1 — 0)(0 + 1), that is,
1o d 1 (Z- é)
o do 47 rg\o 2/
We now choose 3 such that conditions (4.5) and (4.7) hold:
Case 1: d =1,2. We take ro = (d/s)”. Then (4.5) holds, and, replacing
r9 = d/s in (4.7), we obtain the equivalent condition o < 4/(d — 2s), which
holds in view of (4.1).

Case 2: d > 3. If d/s < 2d/(d — 2), we can proceed exactly as in the
previous case. If not, we choose 1o = (2d/(d — 2))~. Replacing in (4.5) we
get the condition

(4.7)

S
p(d—2—-2s)
Taking the highest value of p, p = 2d/(d — 2s), this condition amounts to
o0 < 2/(d—2—2s), which, in view of (4.1), holds for s < 1.
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We now examine the condition (4.7). We claim that 2p > do: if not, then
dp < 2do < d(p — 2),
which implies
d>5 and p>2d/(d—4)> 2%,
which is absurd. Taking 7o = 2d/(d — 2), condition (4.7) translates to
dlc —2) <p(2s+2—4d),
which holds, due to (4.1) and s < 2.

Step 2. Now, we deal with the estimates in L% ((0,7T), Bﬁf(Rd)). To do
this, we set r3 = 2p/(p — o) and let g3 be such that (g3, r3) is admissible.
Therefore,

r3 3T
p=o =0 -
rg — 2 r3 — Ty
Since p — 20 > 2, it follows that
2d 2d
2<rg<p< — < —— i < 1.
BEPS T Sa—2 ¢

Given any admissible pair (g,7), by Strichartz estimates, we have that
00 oy 522 S Mol s + M7l o e
"3

Then, following the ideas in Step 1, we infer that
Hul"ull go2 S Nl Ze llull g2, (4.8)
"3
where a = orgry/(rg — r5) = p. Finally, by Hélder’s inequality, we conclude
that

T , 1
el oy ey < Il /0 Ju(r) |, pdr) %

11
ST llulZeeqomyn el pos 0.1y, B252)-
Note that this estimate also holds for (¢,7) = (400,2), in which case we
obtain the control of the
L=((0,7), By*(R)) = L=((0,T), H*(RY))
norm.

Step 3. The previous steps imply that, for T" small, ® : J) — ). As the
metric is the one defined by the norm || - ||y, the contraction estimate follows
by analogous arguments. O
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5. PROOF OF THEOREM 1.6

Throughout this section, we supposed =3, 0 =2,4 <p <6 and A = —1.
We recall the formal energy functional

1 1
Bu) = 2/|Vu|2d:n—|—4/|u|4dx.

Proposition 5.1. Fiz € > 0 small and 0 = (p —4)/(2p — 4). Given ug €
Z)(R3), let ¢ € Z{(R?) and ¢ € ZL(R?) N (Nysy H(R?)) satisfy

up=0¢+v, E@) S Wz S [Wllge S

Then the solution u of (NLS) with initial condition ug is defined on [0, 0], § =
7", Moreover, there exists ® € Z}(R?) such that
u(d) = ® 4 €%
and
1440

B(@®) - E(9) S &Y, 5=

Proof. Throughout the proof, we abbreviate L?((0,6),Y) to LY.

Step 1. Let v be the Z}-solution of (NLS) with initial condition ¢ (whose
existence was proved in [10]). Due to the conservation of energy, v is defined
on [0, d],

E(v(t)) = E(¢) S e
and
[Vl s s S 33810l peera S 638 E ()M

Furthermore, letting (¢, ) be an admissible pair and then applying Strichartz
estimates on the Duhamel formula, we find that

1902, S 19002 + 0PVl /3,09
t x
S IVl + [0 g 1901
S ()" + 6B 2|Vl s

Since 6Y/4E(¢)Y/2 = ", for € small, we conclude that
HVUHLng S E(¢)1/2~

Step 2. We define the function w by setting

u=v+ ey +w.
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Then w is a solution of
t
w(t) =i [ 02 (uln) Putr) - fo(o)Po(r)
0

Now, we estimate w in LYW, over the time interval [0,4], for any (g,r)
admissible. Let us first observe that, since the nonlinearity is cubic, one
may first split it into several terms and then apply (a possibly different)
Strichartz estimate to each one individually. We are then left with estimates

in some dual Strichartz space LzlLf{,,. Using Holder’s inequality, the analysis
can be reduced to four terms:
w37 UQ’LU, U2(€itAw)7 (eitAlb)?).
Estimate for w?:
3 /44,112
el sy i8S 67wl ey

0+
S€ ||w|‘%g°H;||w||Lf/3W;,4-

Estimate for v2(e®4)): for p = 2T, when no derivatives are present, we
estimate

itA .
|||e"t 1JJ||U|2||L?/LZ/ =4 Hezt d}HLtooLgo— ”UH%?OLg
S N oy E($)V/2 S €246,

We now consider the estimates in L] W;} . On one hand, when the derivative
falls onto the free solution,

IVl Pl = 6 15T 00l e 0o s
S Nl s E(9)1? S /249
On the other hand, if the derivative falls onto v,
HleitAT/)IIUIIVUIIILz'LZ' = &% "] e o 1Vl ge a1V 0l s34
< 55/87”¢”H(3/2)*E(¢)3/4 < (1/2420,
Estimate for (e"*2¢)3: for p = 2+,

itA 113 it A 3
e P e [P

- (i 6)t | i 1—(p/6)T\ >
<ot (et B0 let2y) L 20T
< (BO0+H(6-D) /4
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For the term with a derivative, the estimate is improved:
it A it A A it A
H’elt w|2ve2t wHL’Y LP ~ ||62t wHLZi'y L3p ”velt 1/1HL3’Y,L3P/

< 51 ¢(6-p)/6 (HveitAwHLB) Ve ZtAwH (3}2/)37 )

< (B0+(6-p)/6+1

~

Estimate for v?w: once again, we estimate separately the term, depending

on whether it has no derivatives, a derivative on w or a derivative on v:
lo2wll a0 S Nol3ge gl sy S B84 4wl s,
+
S 60 Hw”Lf/SL%7

[0*Vwl s ars S IollEe o | Vll 375y < EYV2514 |Vl 8/9;

+
<Vl sy,

lowVo]l o5 S 6V ([0l g llwll g1V oll 2

£l e
S Vol IVl Vol 2

L?2L,
o

+
S 51/2E||U)HL§OH; S € Jwll oo -

In conclusion, setting X = sup||wl| ¢y 1.,
(ar) e

X< /240 O x + 203,

By obstruction, we conclude that
sup||wl] a1 S /2120 — 8
(a.r) e

Step 3. Define
O = v(d) +w(9).
Then ® € Z}, u(8) = ® + €924, and
E(®) — E(¢) = (E(v(0) +w(d)) — E(v(d)))
S AIVw(d)lrz (IVu(d)lr2 + [Vw(d)]l2)
+ [l (@)l e (o174 + w(6)]174)
S PE(@)? + ¥+ PE(9) 4 P < P O

~
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Proof of Theorem 1.6. It suffices to prove that any initial condition ug €
Z}(R?) gives rise to a solution u defined on [0, 1]. In this interval, the linear

group is bounded in Z}(R?) uniformly in time.
Step 1. Fix a cut-off function supported on the unit ball y and set
Xe(§) = x(&§/€). Define

Y =Xexug and ¢ =ug— .
Then, for any € > 0 small and a > 1, using Mikhlin’s multiplier theorem,

lllzy, 9112y < ol z3-

Observe that these inequalities are uniform in € (see [2, Theorem 6.1.3]).
Moreover,

9/l e S € Hluol 2
and
Iollre S € ol S e Hluollzy-

By interpolation, we conclude that, for § = (p —4)/(2p — 4),

I¢llzs S € “lluollzy and E(¢) S e .

Step 2. Applying Proposition 5.1 and setting 6 = 689+, u is defined on
[0,0] and, at time t = §, it can be decomposed as ® + e**?¢). Since ® and
e9%q) are still in the conditions of Proposition 5.1, the result may be applied
once more to conclude that u is defined on [0,20]. The argument may be
iterated for as long as the energy F(¢) satisfies the bound E(¢) < €. Since
the number of steps needed to reach 7' =1 is of the order § !, we require

Energy increment x Number of steps ~ €? 30671 « ¢4,

that is, 8 > 7. This condition is verified whenever 4 < p < 9/2. The proof
is finished. I
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