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Abstract. We study the nonlinear Schrödinger equation with initial
data in Zsp(Rd) = Ḣs(Rd) ∩ Lp(Rd), where 0 < s < min{d/2, 1} and
2 < p < 2d/(d − 2s). After showing that the linear Schrödinger group
is well-defined in this space, we prove local well-posedness in the whole
range of parameters s and p. The precise properties of the solution
depend on the relation between the power of the nonlinearity and the
integrability p. Finally, we present a global existence result for the
defocusing cubic equation in dimension three for initial data with infinite
mass and energy, using a variant of the Fourier truncation method.

1. Introduction

It is well-known that the Schrödinger equations

iut + ∆u+ f(|u|)u = 0, (1.1)

where f : R+ → R, admit the formal mass-invariant

M(u) =

∫
|u|2dx.
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For initial data in L2-based spaces, such as the Sobolev spaces Hs(Rd), the
local well-posedness of (1.1) and the problem of global existence versus blow-
up in finite time of solutions (in which the mass of the initial data often plays
a very important role) are now relatively well-understood for large classes of
nonlinear potentials f(|u|). On the other hand, for initial data u0 6∈ L2(Rd),
which we refer to as having “infinite mass”, results in the literature are
rather scarce. One of the first works in this direction is due to Zhidkov: in
[21], the author studied the well-posedness of the Gross-Pitaevskii equation

iut + ∆u− (|1− |u|2)u = 0 (GP)

in the space

X1(R) = L∞(R) ∩ Ḣ1(R).

This space is specially suited to treat cases where (GP) is complemented
with a non-zero boundary condition at infinity (u → ±1). This situation
arises naturally in several physical contexts described by (GP), such as the
study of dark solitons in nonlinear optics ([17]) or the propagation of solitary
waves in Bose condensates (see for instance [20] and the references therein).

The results in [21] were extended in [11] (see also [13]) to higher spatial di-
mensions through the following generalizations of X1(R), coined as “Zhidkov
spaces”:

Xk(Rd) = {u ∈ L∞(Rd) : ∇u ∈ Hk−1(Rd)}.

Also, in [1], the nonlinear Schrödinger equation

iut + ∆u+ λ|u|σu = 0, (NLS)

where λ = ±1, was considered with initial data of infinite-mass u0 = aδ0 +ũ0

for a ∈ R \ {0} and ũ a regular function. In particular, local well-posedness
was proved for ũ0 ∈ L2(Rd) and σ < 2/d.

In [10], we showed the local well-posedness of (NLS) for initial data in

Z1
p (Rd) := Lp(Rd) ∩ Ḣ1(Rd)

for 2 < p ≤ 2σ + 2 and d > 2, and for p > 2σ + 2 in dimensions d = 1 and
d = 2. Note also that, in [11], the well-posedness of (NLS) was addressed in
Xk(Rd) for s = k integer, k > d/2. Under this assumption, the space Xk is
an algebra and the local existence theory follows from standard arguments.
In the present work, we extend these results to rough initial data in

Zsp(Rd) := Lp(Rd) ∩ Ḣs(Rd),
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under the conditions

0 < s < min{d/2, 1}, 2 < p < 2∗ :=
2d

d− 2s
. (1.2)

Concerning the p-endpoints, notice that when p = 2, Zsp(Rd) = Hs(Rd)
and, when p = 2∗, Zs2∗(Rd) = Ḣs(Rd). The local well-posedness of (NLS)
for initial data in these spaces has been treated in [6] (see also [5, Section
4.9]). Our aim is to fill the gap between both results and to understand the
different features of the dynamical flow depending on p.

The first essential step is the solvability of the linear equation in Zsp :

Theorem 1.1. Let s and p as in (1.2). The Schrödinger group {eit∆}t∈R
acts continuously on Zsp(Rd). Moreover, for u0 ∈ Zsp(Rd),

‖eit∆u0‖Zsp . (1 + |t|)‖u0‖Zsp . (1.3)

We now state the local existence results for (NLS). To clarify, we say
that u is a solution of (NLS) with initial condition u0 if it satisfies the
corresponding Duhamel formula

u(t) = eit∆u0 + iλ

∫ t

0
ei(t−τ)∆|u(τ)|σu(τ)dτ. (1.4)

Motivated by the usual scaling argument, we will only consider Ḣs- subcrit-
ical cases:

σ <
4

d− 2s
. (1.5)

When we apply a fixed-point argument to (1.4), the main difficulty is the
control of the L∞t L

p
x norm, which is not in the scope of the usual Strichartz

estimates. There are two main approaches to tackle this problem. The
first consists in proving that the integral term in the Duhamel formula,
u(t)−eit∆u0, is in LqtL

r
x, for an admissible pair (q, r) (in the Strichartz sense

(3.1)). However, as in [10], this strategy only works if p ≤ 2σ + 2:

Theorem 1.2. Let s and p as in (1.2), σ satisfying (1.5), p ≤ 2σ + 2
and u0 ∈ Zsp(Rd). Then there exist T = T (‖u0‖Zsp ) > 0, admissible pairs

(qj , rj), j = 1, 2 and a unique solution

u ∈ C([0, T ],Zsp(Rd))

2⋂
j=1

Lqj ((0, T ), Ḃs,rj (Rd))

to (NLS) with initial condition u(0) = u0. Moreover,

u− eit∆u0 ∈ C([0, T ], L2(Rd)) ∩ Lq1((0, T ), Lr1(Rd)). (1.6)
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Observe that (1.6) represents a gain of integrability through the nonlinear
term. In other words, the large tails of the solution evolve linearly, while
the nonlinear effects are localized in space. As it will be seen, this property
is a direct consequence of the classical Strichartz estimates, which are in
themselves an embodiment of gain in integrability. For p > 2σ + 2, this
feature is no longer available and we follow the second approach, which
consists in using directly (1.3) and then reach an admissible LqtL

r
x at the

expense of s derivatives.

Theorem 1.3. Let s and p as in (1.2), p > 2σ+ 2, and u0 ∈ Zsp(Rd). Then
there exist T = T (‖u0‖Zsp ) > 0, admissible pairs (qj , rj), j = 1, 2, 3, and a
unique solution

u ∈ C([0, T ],Zsp(Rd))

3⋂
j=1

Lqj ((0, T ), Ḃs,rj (Rd))

to (NLS) with initial condition u(0) = u0.

Remark 1.4. Observe that, in the above theorem, σ satisfies (1.5), since

σ <
p

2
− 1 <

d

d− 2s
− 1 <

4

d− 2s
.

Remark 1.5. In fact, the proof of this theorem naturally applies to the case
s = 1, thus, extending the local well-posedness theory in Z1

p (Rd) developed
in [10].

Finally, we consider the global existence problem. When compared with
the classical theory in Hs(Rd) spaces, two main difficulties arise: first, the
linear group is not bounded in Zsp(Rd) uniformly in time, which means that
global results for small data are not straightforward. Second, the conserva-
tion laws for the mass M and the energy

E(u) =
1

2

∫
Rd
|∇u|2dx− λ

σ + 2

∫
Rd
|u|σ+2dx

are not available in Zsp(Rd). In [10], a global result in Z1
σ+2(Rd) was obtained

for λ = 1 and σ small: even though the mass is not an available quantity,
one may still derive a corrected mass estimate by throwing away the large
tails of the solution. Since the energy is well-defined in Z1

σ+2(Rd) (and
thus conserved), this estimate is sufficient to apply a Gagliardo-Nirenberg
argument. The case λ = −1 is trivial, as the energy provides a direct bound
for the Z1

σ+2(Rd) norm. It is interesting to notice that, in this case, the
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nonlinear evolution satisfies stronger bounds than the linear one, where a
growth of the Lσ+2(Rd) norm is observed.

Our goal is to understand whether a global existence result is possible
when neither mass nor energy are well-defined. To that end, we sought
inspiration in the Fourier truncation method developed by Bourgain ([3],
[4]) for the defocusing case λ = −1, where the a priori bound provided by
the energy conservation, together with a nonlinear smoothing effect, allows
one to extend the global existence result from H1(Rd) to Hs(Rd), for s close
to 1. The technique has been refined in various papers ([8], [9], [7]), where
one employs several multilinear estimates on Bourgain spaces. Since these
refinements deeply rely on the conservation of the mass, we have decided to
follow the more robust arguments of Bourgain instead.

In our context, one may consider the problem with either a lack of regu-
larity (that is, in Zsσ+2(Rd), s < 1), or with a lack of integrability (in Z1

p (Rd),
p > σ + 2). The first direction seems quite similar to the Hs(Rd) case (but
not entirely trivial). We therefore focus on the second possibility. Following
the heuristics of the Fourier truncation method, the key property is a non-
linear “smoothing” estimate which, in the context of integrability, is akin to
(1.6). This argument, which suggests that global existence should be valid
for p close to σ + 2, is made concrete in the following particular case:

Theorem 1.6. Set σ = 2 and λ = −1. Then (NLS) is globally well-posed
in Z1

p (R3), for any 4 < p < 9/2.

The methodology is in fact quite general and similar results should be
achievable in the general case (at least for σ even). This should be pursued
in future works.

Remark 1.7. In the classical Ḣs space, global existence has been obtained
through concentration-compactness/rigidity arguments in very specific cases
(see, for example, [12, 14, 15, 16, 18, 19]). Using persistence arguments (as
in [10, Proposition 3.4]), these results should be easily extendible to Zsp(Rd).

The rest of this paper is organized as follows: in Section 2, we introduce
some notations and study the linear problem. In Sections 3 and 4, we prove
the local well-posedness of (NLS) for p ≤ 2σ+2 and p > 2σ+2, respectively.
Finally, in Section 5, we prove Theorem 1.6.

2. Preliminaries and linear estimates

We denote the Fourier transform by F . In our analysis, we will use various
Sobolev and Besov spaces, which we now recall for the sake of convenience:
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• the homogeneous Sobolev space over Lr(Rd) of order s ∈ R,

Ẇ s,r(Rd) =
{
f ∈ S′(Rd)/C(Rd) : F−1(|ξ|sFf) ∈ Lr(Rd)

}
,

where C(Rd) is the set of all constant distributions;
• the classical inhomogeneous Sobolev space of order s,

W s,r(Rd) =
{
f ∈ S′(Rd) : F−1((1 + |ξ|2)s/2Ff) ∈ Lr(Rd)

}
;

• for s ∈ R, 1 ≤ p, q ≤ ∞, the homogeneous Besov spaces,

Ḃs,q
p (Rd) :=

{
f ∈ S ′(R)/C(Rd); ‖f‖Ḃs,qp =

(∑
j∈Z

2qjs‖∆jf‖qLp
) 1
q < +∞

}
,

where ∆j is the Littlewood-Paley projection onto frequencies ∼ 2j ;
• the corresponding inhomogeneous Besov spaces,

Bs,q
p (Rd) :=

{
f ∈ S ′(Rd) : ‖f‖Bs,qp = ‖S0f‖Lp

+
(∑
j≥1

2qjs‖∆jf‖qLp
) 1
q < +∞

}
,

where S0 is the projection onto frequencies . 1.

In the remainder of this section, we study the linear problem for initial
data u0 ∈ Zsp(Rd). By the Sobolev injection, we have

Hs(Rd) ↪→ Zsp(Rd) ↪→ Lq(Rd), p ≤ q ≤ 2∗. (2.1)

Following the ideas in [11], we introduce the following space:

Definition 2.1. Given n ∈ N, s > 0 and 1 ≤ p ≤ +∞, we define the
function space

Z [s,s+n]
p (Rd) :=

⋂
α∈[s,s+n]

Zαp (Rd)

endowed with the norm

‖ · ‖Z [s,s+n]
p

= sup
α∈[s,s+n]

‖ · ‖Zαp

The next result states that any element in Zsp can be canonically decom-
posed into a regular slowly decaying part and a rough localized term.

Lemma 2.2. Let n ∈ N and 2 ≤ p ≤ 2∗. Then

Zsp(Rd) ∼= Hs(Rd) + Z [s,s+n]
p (Rd).
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Proof. Given g ∈ Zsp(Rd), we define g1 = ψ̌ ∗ g, where ψ is a bump function

localized in the unit ball. We claim that g1 ∈ Z [s,s+n]
p (Rd). In fact taking

α ∈ [s, s+ n] and writing α = s+ k, 0 ≤ k ≤ n, we have that

‖Dαg1‖L2 = ‖Dkψ̌ ∗Dsg‖L2 . ‖g‖Ḣs

and

‖g1‖Lp . ‖g‖Lp
by Young’s inequality and the fact that ψ ∈ S(Rd). Therefore,

‖g1‖Z [s,s+n]
p

= sup
α∈[s,s+n]

‖g1‖Zαp . ‖g‖Zsp . (2.2)

It remains to prove that g2 := g − g1 ∈ Hs(Rd). In fact

‖g2‖Hs = ‖Jsĝ(1− ψ)‖L2 . ‖ĝ(1− ψ)‖L2 + ‖|ξ|sĝ(1− ψ)‖L2 .

Observing that 1−ψ
|ξ|s is bounded,

‖g2‖Hs ≤ ‖|ξ|sĝ‖L2

∥∥∥(1− ψ)

|ξ|s
∥∥∥
L∞

+ ‖|ξ|sĝ‖L2‖1− ψ‖L∞ (2.3)

. ‖g‖Zsp .

Finally, the embedding

Hs(Rd) + Z [s,s+n]
p (Rd) ↪→ Zsp(Rd)

is a direct consequence of (2.1). �

Proof of Theorem 1.1. Let u0 ∈ Zsp(Rd). From Lemma 2.2, taking

n = 2, we can decompose u0 as u0 = v0 + w0, with v0 ∈ Hs(Rd) and w0 ∈
Z [s,s+2]
p (Rd). We set u(t) = eit∆u0 and introduce v(t) = u(t) − w0. Then v

satisfies the linear IVP{
i∂tv + ∆v = −∆w0,
v(x, 0) = v0(x)

(x, t) ∈ Rd × R, (2.4)

and

v(t) = eit∆v0 − i
∫ t

0
ei(t−τ)∆(∆w0)dτ. (2.5)

Notice that v(t) ∈ Hs(Rd). Indeed,

‖v(t)‖Hs ≤ ‖eit∆v0‖Hs +

∫ t

0
‖ei(t−τ)∆(∆w0)‖Hsdτ

≤ ‖v0‖Hs + |t|(‖w0‖Ḣ2 + ‖w0‖Ḣs+2)
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≤ ‖v0‖Hs + 2|t|‖w0‖Z [s;s+2]
p

since s ≤ 2. Hence, by Lemma 2.2,

u(t) = v(t) + w0 ∈ Hs(Rd) + Z [s,s+2]
p (Rd) ↪→ Zsp(Rd)

and

‖u(t)‖Zsp ≤ ‖v(t)‖Hs + ‖w0‖Z [s,s+2]

= ‖v0‖Hs + 2|t|‖w0‖Z [s;s+2]
p

+ ‖w0‖Z [s,s+2]

. (1 + |t|)‖u0‖Zsp .

Next, we show that {eit∆}t∈R defines a continuous group over Zsp(Rd).
From (1.3),

eit∆ : Zsp(Rd) 7→ Zsp(Rd)
is a bounded operator and we only need to show, for φ ∈ Zsp(Rd), that

lim
t→0
‖eit∆φ− φ‖Zsp = 0. (2.6)

Consider a sequence (φn) ∈ Hs(Rd) such that φn →
Zsp
φ. Then

‖eit∆φ− φ‖Zsp ≤ ‖e
it∆(φ− φn)‖Zsp + ‖eit∆φn − φn‖Zsp + ‖φn − φ‖Zsp .

Given ε > 0, we choose n such that ‖φn − φ‖Zsp < ε and for any |t| < 1,

‖eit∆(φ− φn)‖Zsp . ε

(by (1.3)). By continuity of {eit∆}t∈R over Hs(Rd), for t small enough,

‖eit∆φ− φ‖Zsp . ‖e
it∆φn − φn‖Hs + 2ε . 3ε. �

3. Local well-posedness for p ≤ 2σ + 2

We begin this section by stating some Strichartz estimates in Besov spaces.
For the proof of these results the reader may refer to [5]. As usual, we say
the pair (q, r) is admissible if

2

q
= d
(1

2
− 1

r

)
,

2 ≤ r ≤

{
2d/(d− 2), d ≥ 3

∞, d = 1, 2,
and, if d = 2, r 6=∞. (3.1)

Lemma 3.1. Given s ∈ R and (q, r), (γ, ρ) admissible pairs, the following
properties hold:
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(1) Homogeneous estimate:

∀u0 ∈ Hs(Rd), ‖eit∆u0‖Lq(R,Bs,2r )
. ‖u0‖Bs,22

∼ ‖u0‖Hs .

(2) Inhomogeneous estimate: Let I be an interval of R (bounded or not)
and t0 ∈ Ī. There exists a constant C independent of I (and of

t0 ∈ I) such that ∀g ∈ Lγ′(I,Bs,2
ρ′ (Rd)),∥∥∥∫ t

t0

ei(t−τ)∆g(·, τ)dτ
∥∥∥
Lq(I,Bs,2r )

≤ C‖g‖
Lγ′ (I,Bs,2

ρ′ )
.

Both estimates remain valid by replacing the Besov spaces by their homoge-
neous counterpart.

Throughout this section, we assume that (1.2) holds and that (q1, r1),
(q2, r2) are admissible pairs that will be fixed later. Before proving Theorem
1.2, let us define the function spaces where the solution of (NLS) will be
obtained. Define, for T > 0,

S0 := L∞((0, T ), L2(Rd)) ∩ Lq1((0, T ), Lr1(Rd)),

Ss := L∞((0, T ), Hs(Rd))∩Lq1((0, T ), Bs,2
r1 (Rd))∩Lq2((0, T ), Ḃs,2

r2 (Rd)) ↪→ S0

and, given u0 ∈ Zsp(Rd) and M > 0,

E :=
{
u ∈ L∞((0, T ),Zsp(Rd)) ∩ Lq2((0, T ), Ḃs,2

r2 (Rd)) :

‖u‖E := ‖u‖L∞((0,T ),Lp) + ‖u− eit∆u0‖Ss ≤M
}
. (3.2)

Proposition 3.2. Let u0 ∈ Zsp(Rd) and M > 0. Setting d(u, v) := ‖u−v‖S0,
(E , d) is a complete metric space.

Proof. Let us first notice that for u, v ∈ E ,

‖u− v‖S0 ≤ ‖u− eit∆u0‖S0 + ‖v − eit∆u0‖S0

. ‖u− eit∆u0‖Ss + ‖v − eit∆u0‖Ss ≤ 2M

and d is well-defined over E .
Consider a Cauchy sequence (un)n∈N in E . Since

vn := un − eit∆u0 ∈ Ss ↪→ S0

and, for fixed ε > 0,

‖vm − vn‖S0 = d(um, un) < ε for n and m large enough,



380 Vanessa Barros, Simão Correia, and Filipe Oliveira

it follows that (vn)n∈N is a Cauchy sequence in S0. Thus, there exists v ∈ S0

such that
vn = un − eit∆u0 →

S0

v. (3.3)

As (vn)n∈N is bounded in Ss, applying [5, Theorem 1.2.5], we see that v ∈ Ss
and

‖v‖Ss ≤ lim inf ‖un − eit∆u0‖Ss . (3.4)

Since u0 ∈ Zsp(Rd) ↪→ Ḣs(Rd), we have from Theorem 1.1 and Lemma 3.1
that

eit∆u0 ∈ L∞((0, T ),Zsp(Rd)) ∩ Lq2((0, T ), Ḃs,2
r2 (Rd)).

Hence, setting
u = v + eit∆u0,

we conclude that d(un, u)→ 0 and

u ∈ L∞((0, T ),Zsp(Rd)) ∩ Lq2((0, T ), Ḃs,2
r2 (Rd)).

Finally, for each t ∈ (0, T ), since un(t) − u(t) → 0 in L2(Rd), un(t) ⇀ u(t)
in Lp(Rd) and

‖u‖E = ‖u‖L∞((0,T ),Lp) + ‖v‖Ss
≤ lim inf

(
‖un‖L∞((0,T ),Lp) + ‖vn‖Ss

)
≤M. �

Proof of Theorem 1.2. Consider the integral operator

Φ[u](t) := eit∆u0 + iλ

∫ t

0
ei(t−τ)∆|u(τ)|σu(τ)dτ, 0 < t < T, u ∈ E .

We show that Φ is a contraction in (E , d) for M = 2‖u0‖Zsp and T < 1 to be

fixed later. With this choice, for any u ∈ E and (γ, ρ) admissible,

‖u‖
Lγ((0,T ),Ḃs,2ρ )

≤ ‖u− eit∆u0‖Lγ((0,T ),Ḃs,2ρ )
+ ‖eit∆u0‖Lγ((0,T ),Ḃs,2ρ )

.M + (1 + T )‖u0‖Ḣs .M. (3.5)

Step 1. We begin by estimating

‖Φ[u](t)− eit∆u0‖Ss =
∥∥∥λ ∫ t

0
ei(t−τ)∆|u(τ)|σu(τ)dτ

∥∥∥
Ss
. (3.6)

Applying Strichartz estimates,

‖Φ[u](t)− eit∆u0‖Ss . ‖|u|σu‖Lγ′ ((0,T ),Lρ′ ) + ‖|u|σu‖
Lq
′
1 ((0,T ),Ḃs,2

r′1
)
. (3.7)

We will treat these two norms separately. The estimates for the second follow
closely the Ḣs theory. We include the steps for the sake of completeness.
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Control of the nonlinear term with s derivatives. Following [5, Propo-
sition 4.9.4], we infer that

‖|u|σu‖
Ḃs,2
r′1

. ‖u‖σLa‖u‖Ḃs,2r1 , (3.8)

where a = σr1r
′
1/(r1 − r′1). Choosing

r1 =
d(σ + 2)

d+ sσ
, q1 =

4(σ + 2)

σ(d− 2s)
,

we have (q1, r1) admissible and

r∗1 =
dr1

d− sr1
=
d(σ + 2)

d− 2s
= a.

Thus,

‖|u|σu‖
Ḃs,2
r′1

. ‖u‖σ+1

Ḃs,2r1
(3.9)

and

‖|u|σu‖
Lq
′
1 ((0,T ),Ḃs,2

r′1
)
.
(∫ T

0
‖u(t)‖(σ+1)q′1

Ḃs,2r1
dt
) 1
q′1 .

A simple computation shows that q1 > q′1(σ+1) is equivalent to the condition
σ < 4/(d− 2s). By Hölder,

‖|u|σu‖
Lq
′
1 ((0,T ),Ḃs,2

r′1
)
. T

q1−q
′
1(σ+1)

q1q
′
1 ‖u‖σ+1

Lq1 ((0,T ),Ḃs,2r1 )
(3.10)

. T
q1−q

′
1(σ+1)

q1q
′
1 Mσ+1.

Control of the nonlinear term with zero derivatives. First, notice
that

‖|u|σu‖Lγ′ ((0,T ),Lρ′ ) . ‖u‖
σ+1

Lγ
′(σ+1)((0,T ),Lρ

′(σ+1))
.

Case σ ≥ 2s/(d− 2s): Define

r∗2 =
dr2

d− r2s
, ρ′ =

r∗2
σ + 1

.

In particular Ḃs,2
r2 (Rd) ↪→ Lr

∗
2 (Rd). We require that

2 ≤ r2, ρ2 ≤
2d

(d− 2)+
(with r2, ρ 6=∞ if d = 2).
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For d ≥ 3, these conditions can be met if

max
{1

2
− s+ 1

d
,

1

2(σ + 1)

}
≤ min

{1

2
− s

d
,

1

σ + 1

(1

2
+

1

d

)}
.

which holds iff σ ≥ 2s/(d− 2s). An analogous computation yields the same
conclusion for d = 1, 2. This allows us to consider the admissible pairs
(q2, r2) and (γ, ρ). Therefore,

‖|u|σu‖Lγ′ ((0,T ),Lρ′ ) . ‖u‖
σ+1

Lγ
′(σ+1)((0,T ),Ḃs,2r2 )

.
(∫ T

0
‖u(t)‖γ

′(σ+1)

Ḃs,2r2
dt
) 1
γ′
.

By Hölder inequality,

‖|u|σu‖Lγ′ ((0,T ),Lρ′ ) . T
q2−γ

′
2(σ+1)

q2γ
′ ‖u‖σ+1

Lq2 ((0,T ),Ḃs,2r2 )
(3.11)

. T
q2−γ

′(σ+1)

q2γ
′ Mσ+1

if q2 > (σ + 1)γ′. A simple computation shows that this condition is equiv-
alent to σ < 4+2s

d−2s , which holds.

Case σ < 2s/(d− 2s): We choose r2 = ρ′ = 2 (ρ = 2, q2 = γ = +∞ and
γ′ = 1). Noticing that

p ≤ 2σ + 2 <
2d

d− 2s
= r∗2,

we obtain by interpolation for some 0 < θ < 1

‖u‖Lρ′(σ+1) = ‖u‖L2σ+2 . ‖u‖θLp‖u‖1−θL2∗ . ‖u‖θLp‖u‖1−θḂs,22

and

‖u‖σ+1
Lσ+1((0,T ),L2σ+2)

.
∫ T

0
‖u(t)‖θ(σ+1)

Lp ‖u(t)‖(1−θ)(σ+1)

Ḃs,22

dt

. T‖u‖θ(σ+1)
L∞((0,T ),Lp)‖u‖

(1−θ)(σ+1)

L∞((0,T ),Ḃs,22 )
(3.12)

. TMσ+1.

Step 2. By inequalities (3.11), (3.12) and (3.10), we conclude that, for
some δ > 0,

‖Φ(u)− eit∆u0‖Ss . T δMσ+1. (3.13)

Next, using Theorem 1.1 and the Sobolev embedding, we infer that

‖Φ(u)‖L∞((0,T ),Lp) ≤ ‖eit∆u0‖L∞((0,T ),Zsp) + ‖Φ(u)− eit∆u0‖L∞((0,T ),Hs)

≤ (1 + T )‖u0‖Zsp + ‖Φ(u)− eit∆u0‖Ss
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≤ (1 + T ) |u0‖Zsp + T δMσ+1.

Choosing T > 0 sufficiently small (depending exclusively on ‖u0‖Zsp ), we
conclude that

Φ(u) ∈ C([0, T ],Zsp(Rd)) ∩ Lq((0, T ), Ḃs,2
r (Rd)) ↪→ E

and

‖Φ(u)‖E ≤M.

Step 3. To show the contraction estimate, take u, v ∈ E . Using Strichartz
estimates, we find that

d(Φ(u),Φ(v)) . ‖|u|σu− |v|σv‖
Lq
′
1 ((0,T ),Lr

′
1 )
.

Since

||u|σu− |v|σv| . (|u|σ − |v|σ)|u− v|,

it follows from Hölder’s inequality that

d(Φ(u),Φ(v)) ≤ ‖(‖u‖σLa + ‖v‖σLa)‖u− v‖Lr1‖Lq′1 (0,T )
.

Hence,

d(Φ(u),Φ(v)) . T
1
q′1
−σ+1

q1

(
‖u‖σ

Lq1 ((0,T ),Ḃs,2r1 )
+ ‖v‖σ

Lq1 ((0,T ),Ḃs,2r1 )

)
d(u, v)

. T
1
q′1
−σ+1

q1 Mσd(u, v).

Therefore, for T = T (‖u0‖Zsp ) small enough, the mapping Φ : E → E is a
contraction and, by Banach’s fixed point theorem, Φ has a unique fixed point
u in E . Since u = Φ(u) ∈ C([0, T ],Zsp(Rd)), the result follows. �

Remark 3.3. A simple way to understand the restriction p ≤ 2σ + 2 is to
notice that, when one applies a Strichartz estimate on the Duhamel term,∥∥∥∫ t

0
ei(t−τ)∆|u(τ)|σu(τ)dτ

∥∥∥
Lq((0,T ),Lr)

. ‖|u|σu‖Lγ′ ((0,T ),Lρ′ )

= ‖u‖σ+1

Lγ
′(σ+1)((0,T ),Lρ

′(σ+1))
,

one needs p ≤ ρ′(σ + 1) to ensure integrability in space. Since ρ′ ≤ 2, the
condition follows.
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4. Local well-posedness for p > 2σ + 2

In this section, we treat the remaining case p > 2σ + 2. Note that this
restriction implies that

σ ≤ p

2
− 1 ≤ 2s

d− 2s
. (4.1)

Proof of Theorem 1.3. Given admissible pairs (qj , rj), j = 1, 2, 3, (to be
fixed later on), define

Y :=
{
u ∈ C([0, T ],Zsp(Rd)) ∩

( 3⋂
j=1

Lqj ((0, T ), Ḃs,2
rj (Rd))

)
:

‖u‖Y := ‖u‖L∞((0,T ),Lp) +

3∑
j=1

‖u‖
Lqj ((0,T ),Ḃs,2rj )

≤M
}
. (4.2)

endowed with the natural metric d(u, v) = ‖u − v‖Y . It is clear that (Y, d)
is a complete metric space.

As in the previous section, we consider the map

Φ[u](t) = eit∆u0 + iλ

∫ t

0
ei(t−τ)∆|u(τ)|σu(τ)dτ (4.3)

and prove that Φ : Y → Y is a contraction, for M = 2‖u0‖Zsp and T small.

Step 1. Taking the Lp norm in (4.3) and using Theorem 1.1, we find that

‖Φ[u](t)‖Lp ≤ ‖eit∆u0‖Lp + |λ|
∫ t

0
‖ei(t−τ)∆|u(τ)|σu(τ)‖Lpdτ

. (1 + |t|)‖u0‖Zsp +

∫ t

0
(1 + |t− τ |)‖|u(τ)|σu(τ) |Zspdτ (4.4)

. (1 + T )
(
‖u0‖Zsp +

∫ T

0
‖u(τ)‖σ+1

Lp(σ+1)dτ +

∫ T

0
‖|u(τ)|σu(τ)‖Ḣsdτ

)
.

By [5, Proposition 4.9.4], we know that

‖|u|σu‖Ḣs = ‖|u|σu‖
Ḃs,22
. ‖u‖σLa‖u‖Ḃs,2r1 ,

where we choose

a = p, r1 =
2p

p− 2σ
> 2.

Observe that with this choice, we have r1 < p < 2∗. Therefore,∫ T

0
‖|u(τ)|σu(τ)‖Ḣsdτ .

∫ T

0
‖u(τ)‖σLp‖u(τ)‖

Ḃs,2r1
dτ
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. T
1
q′1 ‖u‖σL∞((0,T ),Lp)‖u‖Lq1 ((0,T ),Ḃs,2r1 )

,

where the pair (q1, r1) is admissible.
We now focus on the second term in (4.4). Observe that, for r2 > 2 (see

[2, Theorem 6.5.1]),

Ḃs,2
r2 (Rd) ↪→ Ḃ0,2

p2 (Rd) ↪→ Lρ(Rd),
1

ρ
=

1

r2
− s

d
.

Hence, by interpolation, under the condition

p(σ + 1) < ρ =
dr2

d− sr2
, (4.5)

there exists 0 < θ < 1 such that

1

p(σ + 1)
=
θ

p
+

1− θ
ρ

, (4.6)

and we get

‖u‖σ+1
Lp(σ+1) . ‖u‖

θ(σ+1)
Lp ‖u‖(1−θ)(σ+1)

Lρ . ‖u‖θ(σ+1)
Lp ‖u‖(1−θ)(σ+1)

Ḃs,2r2
.

In conclusion, for (q2, r2) admissible,∫ T

0
‖u(τ)‖σ+1

Lp(σ+1)dτ . ‖u‖
θ(σ+1)
L∞((0,T ),Lp)

∫ T

0
‖u(τ)‖(1−θ)(σ+1)

Ḃs,2r2
dτ

. T
q2−(1−θ)(σ+1)

q2 ‖u‖θ(σ+1)
L∞((0,T ),Lp)‖u‖

(1−θ)(σ+1)

Lq2 ((0,T ),Ḃs,2r2 )
,

provided that q2 > (1− θ)(σ + 1), that is,

1

σ
+
sp

dσ
− d

4
>

1

r2

( p
σ
− d

2

)
. (4.7)

We now choose r2 such that conditions (4.5) and (4.7) hold:

Case 1: d = 1, 2. We take r2 = (d/s)−. Then (4.5) holds, and, replacing
r2 = d/s in (4.7), we obtain the equivalent condition σ < 4/(d− 2s), which
holds in view of (4.1).

Case 2: d ≥ 3. If d/s ≤ 2d/(d − 2), we can proceed exactly as in the
previous case. If not, we choose r2 = (2d/(d − 2))−. Replacing in (4.5) we
get the condition

σ <
2d

p(d− 2− 2s)
− 1.

Taking the highest value of p, p = 2d/(d − 2s), this condition amounts to
σ < 2/(d− 2− 2s), which, in view of (4.1), holds for s < 1.
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We now examine the condition (4.7). We claim that 2p > dσ: if not, then

4p ≤ 2dσ ≤ d(p− 2),

which implies
d ≥ 5 and p ≥ 2d/(d− 4) > 2∗,

which is absurd. Taking r2 = 2d/(d− 2), condition (4.7) translates to

d(σ − 2) < p(2s+ 2− d),

which holds, due to (4.1) and s < 2.

Step 2. Now, we deal with the estimates in Lqj ((0, T ), Ḃs,2
rj (Rd)). To do

this, we set r3 = 2p/(p − σ) and let q3 be such that (q3, r3) is admissible.
Therefore,

p = σ
r3

r3 − 2
= σ

r3r
′
3

r3 − r′3
.

Since p− 2σ ≥ 2, it follows that

2 < r3 < p <
2d

d− 2s
<

2d

d− 2
for s < 1.

Given any admissible pair (q, r), by Strichartz estimates, we have that

‖φ[u]‖
Lq((0,T ),Ḃs,2r )

. ‖u0‖Ḣs + ‖|u|σu‖
Lq
′
3 ((0;T ),Ḃs,2

r′3
)
.

Then, following the ideas in Step 1, we infer that

‖|u|σu‖
Ḃs,2
r′3

. ‖u‖σLa‖u‖Ḃs,2r3 , (4.8)

where a = σr3r
′
3/(r3 − r′3) = p. Finally, by Hölder’s inequality, we conclude

that

‖|u|σu‖
Lq′ ((0;T ),Ḃs,2

r′ )
≤ ‖u‖σL∞((0,T );Lp)

(∫ T

0
‖u(τ)‖q

′
3

Ḃs,2r3
dτ
) 1
q′3

. T
1
q′3
− 1
q 3‖u‖σL∞((0,T );Lp)‖u‖Lq3 ((0,T ),Ḃs,2r3 )

.

Note that this estimate also holds for (q, r) = (+∞, 2), in which case we
obtain the control of the

L∞((0, T ), Ḃs,2
2 (Rd)) ∼= L∞((0, T ), Ḣs(Rd))

norm.

Step 3. The previous steps imply that, for T small, Φ : Y → Y. As the
metric is the one defined by the norm ‖ ·‖Y , the contraction estimate follows
by analogous arguments. �
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5. Proof of Theorem 1.6

Throughout this section, we suppose d = 3, σ = 2, 4 < p < 6 and λ = −1.
We recall the formal energy functional

E(u) =
1

2

∫
|∇u|2dx+

1

4

∫
|u|4dx.

Proposition 5.1. Fix ε > 0 small and θ = (p − 4)/(2p − 4). Given u0 ∈
Z1
p (R3), let φ ∈ Z1

4 (R3) and ψ ∈ Z1
p (R3) ∩ (

⋂
α>1 Ḣ

α(R3)) satisfy

u0 = φ+ ψ, E(φ) . ε−4θ, ‖ψ‖Z1
p
. 1, ‖ψ‖Ḣα . εα−1.

Then the solution u of (NLS) with initial condition u0 is defined on [0, δ], δ =

ε8θ
+

. Moreover, there exists Φ ∈ Z1
4 (R3) such that

u(δ) = Φ + eiδ∆ψ

and

E(Φ)− E(φ) . εβ−3θ, β =
1 + 4θ

2
.

Proof. Throughout the proof, we abbreviate Lq((0, δ), Y ) to LqtYx.

Step 1. Let v be the Z1
4 -solution of (NLS) with initial condition φ (whose

existence was proved in [10]). Due to the conservation of energy, v is defined
on [0, δ],

E(v(t)) = E(φ) . ε−4θ

and

‖v‖
L
8/3
t L4

x
. δ3/8‖v‖L∞t L4

x
. δ3/8E(φ)1/4.

Furthermore, letting (q, r) be an admissible pair and then applying Strichartz
estimates on the Duhamel formula, we find that

‖∇v‖LqtLrx . ‖∇φ‖L2 + ‖|v|2∇v‖
L
8/5
t L

4/3
x

. ‖∇φ‖L2 + ‖v‖2L∞t L4
x
‖∇v‖

L
8/5
t L4

x

. E(φ)1/2 + δ1/4E(φ)1/2‖∇v‖
L
8/3
t L4

x
.

Since δ1/4E(φ)1/2 = ε0
+

, for ε small, we conclude that

‖∇v‖LqtLrx . E(φ)1/2.

Step 2. We define the function w by setting

u = v + eit∆ψ + w.



388 Vanessa Barros, Simão Correia, and Filipe Oliveira

Then w is a solution of

w(t) = i

∫ t

0
ei(t−τ)∆

(
|u(τ)|2u(τ)− |v(τ)|2v(τ)

)
dτ.

Now, we estimate w in LqtW
1,r
x over the time interval [0, δ], for any (q, r)

admissible. Let us first observe that, since the nonlinearity is cubic, one
may first split it into several terms and then apply (a possibly different)
Strichartz estimate to each one individually. We are then left with estimates

in some dual Strichartz space Lγ
′

t L
ρ′
x . Using Hölder’s inequality, the analysis

can be reduced to four terms:

w3, v2w, v2(eit∆ψ), (eit∆ψ)3.

Estimate for w3:

‖|w|3‖
L
8/5
t W

1,4/3
x

. δ1/4‖w‖2L∞t H1
x
‖w‖

L
8/3
t W 1,4

x

. ε2θ
+‖w‖2L∞t H1

x
‖w‖

L
8/3
t W 1,4

x
.

Estimate for v2(eit∆ψ): for ρ = 2+, when no derivatives are present, we
estimate

‖|eit∆ψ||v|2‖
Lγ
′
t L

ρ′
x

= δ1−‖eit∆ψ‖
L∞t L

∞−
x
‖v‖2L∞t L4

x

. δ1−‖ψ‖
Ḣ(3/2)−E(φ)1/2 . ε1/2+6θ.

We now consider the estimates in LqtẆ
1,r
x . On one hand, when the derivative

falls onto the free solution,

‖|∇eit∆ψ||v|2‖
Lγ
′
t L

ρ′
x

= δ1−‖eit∆∇ψ0‖L∞t L∞−x ‖v‖
2
L∞t L

4
x

. δ1−‖ψ‖
Ḣ(5/2)−E(φ)1/2 . ε3/2+6θ.

On the other hand, if the derivative falls onto v,

‖|eit∆ψ||v||∇v|‖
Lγ
′
t L

ρ′
x

= δ5/8−‖eit∆ψ‖
L∞t L

∞−
x
‖v‖L∞t L4

x
‖∇v‖

L
8/3
t L4

x

. δ5/8−‖ψ‖
Ḣ(3/2)−E(φ)3/4 . ε1/2+2θ.

Estimate for (eit∆ψ)3: for ρ = 2+,

‖|eit∆ψ|3‖
Lγ
′
t L

ρ′
x
. ‖eit∆ψ‖3

L3γ′
t L3ρ′

x

. δ1−
(
‖eit∆ψ‖(p/6)+

Lp ‖eit∆ψ‖1−(p/6)+

Ḣ(3/2)−

)3

. ε8θ+(6−p)/4.
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For the term with a derivative, the estimate is improved:

‖|eit∆ψ|2∇eit∆ψ‖
Lγ
′
t L

ρ′
x
. ‖eit∆ψ‖2

L3γ′
t L3ρ′

x
‖∇eit∆ψ‖

L3γ′
t L3ρ′

x

. δ1−ε(6−p)/6
(
‖∇eit∆ψ‖(1/3)+

L2 ‖∇eit∆ψ‖1−(1/3)+

Ḣ(3/2)−

)
. ε8θ+(6−p)/6+1.

Estimate for v2w: once again, we estimate separately the term, depending
on whether it has no derivatives, a derivative on w or a derivative on v:

‖v2w‖
L
8/5
t L

4/3
x
. ‖v‖2L∞t L4

x
‖w‖

L
8/5
t L4

x
. E1/2δ1/4‖w‖

L
8/3
t L4

x

. ε0
+‖w‖

L
8/3
t L4

x
,

‖v2∇w‖
L
8/5
t L

4/3
x
. ‖v‖2L∞t L4

x
‖∇w‖

L
8/5
t L4

x
. E1/2δ1/4‖∇w‖

L
8/3
t L4

x

. ε0
+‖∇w‖

L
8/3
t L4

x
,

‖vw∇v‖
L2
tL

6/5
x
. δ1/2

∥∥‖v‖L6
x
‖w‖L6

x
‖∇v‖L2

x

∥∥
L∞t

.
∥∥‖∇v‖L2

x
‖∇w‖L2

x
‖∇v‖L2

x

∥∥
L∞t

. δ1/2E‖w‖L∞t H1
x
. ε0

+‖w‖L∞t H1
x
.

In conclusion, setting X = sup
(q,r)
‖w‖

LqtW
1,r
x

,

X . ε1/2+θ + ε0
+
X + ε2θX3.

By obstruction, we conclude that

sup
(q,r)
‖w‖

LqtW
1,r
x
. ε1/2+2θ = εβ.

Step 3. Define

Φ = v(δ) + w(δ).

Then Φ ∈ Z1
4 , u(δ) = Φ + eiδ∆ψ, and

E(Φ)− E(φ) = (E(v(δ) + w(δ))− E(v(δ)))

. ‖∇w(δ)‖L2 (‖∇v(δ)‖L2 + ‖∇w(δ)‖L2)

+ ‖w(δ)‖L4

(
‖v(δ)‖3L4 + ‖w(δ)‖3L4

)
. εβE(φ)1/2 + ε2β + εβE(φ)3/4 + ε4β . εβ−3θ. �
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Proof of Theorem 1.6. It suffices to prove that any initial condition u0 ∈
Z1
p (R3) gives rise to a solution u defined on [0, 1]. In this interval, the linear

group is bounded in Z1
p (R3) uniformly in time.

Step 1. Fix a cut-off function supported on the unit ball χ and set
χε(ξ) = χ(ξ/ε). Define

ψ = χ̌ε ∗ u0 and φ = u0 − ψ.
Then, for any ε > 0 small and α > 1, using Mikhlin’s multiplier theorem,

‖ψ‖Z1
p
, ‖φ‖Z1

p
. ‖u0‖Z1

p
.

Observe that these inequalities are uniform in ε (see [2, Theorem 6.1.3]).
Moreover,

‖ψ‖Ḣα . εα−1‖u0‖Z1
p

and
‖φ‖L2 . ε−1‖φ‖Ḣ1 . ε−1‖u0‖Z1

p
.

By interpolation, we conclude that, for θ = (p− 4)/(2p− 4),

‖φ‖L4 . ε−θ‖u0‖Z1
p

and E(φ) . ε−4θ.

Step 2. Applying Proposition 5.1 and setting δ = ε8θ
+

, u is defined on
[0, δ] and, at time t = δ, it can be decomposed as Φ + eiδ∆ψ. Since Φ and
eiδ∆ψ are still in the conditions of Proposition 5.1, the result may be applied
once more to conclude that u is defined on [0, 2δ]. The argument may be
iterated for as long as the energy E(φ) satisfies the bound E(φ) . ε4θ. Since
the number of steps needed to reach T = 1 is of the order δ−1, we require

Energy increment×Number of steps ∼ εβ−3θδ−1 � ε−4θ,

that is, β > 7θ. This condition is verified whenever 4 < p < 9/2. The proof
is finished. �
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