

ETHYL CARBAMATE

There appears to be no general consensus on a common trivial name for this substance: ethyl carbamate and urethane (or urethan) are both commonly used; however, a preference for ethyl carbamate was noted in the more recent literature. The name urethane is also sometimes applied to high-molecular-weight polyurethanes used as foams, elastomers and coatings. Such products are not made from and do not generate the chemical ethyl carbamate on decomposition. Due to this possible confusion, the term ethyl carbamate has been used in this monograph.

1. Exposure Data

1.1 Chemical and physical data

1.1.1 *Synonyms*

CAS Registry No.: 51–79–6

Synonyms: Carbamic acid ethyl ester; ethylurethan; ethyl urethan; ethyl urethane; urethan; urethane

1.1.2 *Chemical formula and relative molecular mass*

$\text{NH}_2\text{COOC}_2\text{H}_5$ Relative molecular mass: 89.1

1.1.3 *Chemical and physical properties of the pure substance*

From Budavari (2000)

(a) *Description:* Colourless, almost odourless, columnar crystals or white granular powder; the pH of an aqueous solution is neutral

(b) *Boiling-point:* 182–184 °C

(c) *Melting-point:* 48–50 °C

(d) *Solubility:* Dissolves in water (1 g/0.5 mL), ethanol (1 g/0.8 mL), chloroform (1 g/0.9 mL), ether (1 g/1.5 mL), glycerol (1 g/2.5 mL) and olive oil (1 g/32 mL)

(e) *Volatility:* Sublimes readily at 103°C at 54 mm Hg; volatile at room temperature

1.1.4 *Technical products and impurities*

Tradenames for ethyl carbamate include Leucothane, Leucethane and Pracarbamine.

The Chemical Catalogs Online database, produced by Chemical Abstracts Services, lists 37 suppliers for ethyl carbamate, which are predominantly situated in Europe, Japan and the USA. Technical grades with 98% purity as well as products with more than 99% purity (less than 0.1% ignitable residues) are available.

1.1.5 *Analysis*

The titration method described by Archer *et al.* (1948) was used to monitor patients who underwent therapy with ethyl carbamate. A gas chromatography–mass spectrometry (GC–MS) method to monitor ethyl carbamate in blood was developed by Hurst *et al.* (1990) to monitor the time course of elimination of ethyl carbamate in mice.

The methods developed to determine ethyl carbamate in various food matrices are summarized in Table 1.1; the analytical methodology was reviewed by Zimmerli and Schlatter (1991). GC coupled with MS seems to be the method of choice for this purpose. The overwhelming majority of methods involve quadrupole MS operating in selected-ion monitoring mode and the use of isotopically labelled internal standards. Validation data of collaborative studies are available (Dennis *et al.*, 1990; Canas *et al.*, 1994; Dyer, 1994; Hesford & Schneider, 2001; de Melo Abreu *et al.*, 2005). In general, the validation results were judged to be satisfactory for the purpose of analysing ethyl carbamate in the lower microgram per kilogram range. The methods presented by Dyer (1994) and Canas *et al.* (1994) were adopted by the Association of Official Analytical Chemists International as part of their Official Methods. A collaborative analysis also led to the adoption of a method for the determination of ethyl carbamate in the European Community methods for the analysis of wine (European Commission, 1999).

The analysis of minor organic compounds in complex matrices, such as in spirit beverages, is difficult because of interferences by matrix components, even when extensive clean-up procedures are applied to the sample, e.g. extraction over diatomaceous earth columns, which is proposed by many authors. A possible approach to eliminate these interferences is the use of solid-phase extraction in combination with an improved chromatographic separation using multidimensional GC, as proposed by Jagerdeo *et al.* (2002) for the analysis of wine. However, this technique requires the time-consuming removal of ethanol before solid-phase extraction and specialized equipment consisting of GC with a flame-ionization detector and GC–MS, which are coupled using a cryo trap. As another approach, MS detection may be enhanced by application of tandem MS (MS–MS) to provide an improved sensitivity and specificity. Recently, it was demonstrated that low-cost bench-top triple quadrupole mass spectrometers can be used in the routine analysis of ethyl carbamate in spirits (Lachenmeier *et al.*, 2005a) or in bread (Hamlet *et al.*, 2005).

Table 1.1 Methods for the analysis of ethyl carbamate in different matrices

Sample matrix	Internal standard	Extraction principle	Clean-up	Detection	Column	LOD (µg/L)	Reference
Alcoholic beverages	–	Dilution to 10% vol, dichloromethane extraction	–	GC-ECD	DBWAX-30W	Low µg/kg range	Bailey <i>et al.</i> (1986)
	Methyl carbamate	Dichloromethane extraction	Extrelut	GC-NPD	Durabond-Wax	20	Baumann & Zimmerli (1986a)
	–	Dilution to 5% alcohol	Chemtube or Extrelut	GC (1) TEA (2) ECD (3) MS	CP Wax 52 CB	(1) 1 (2) 2–5 (3) 1	Dennis <i>et al.</i> (1986, 1988)
1,4-Butanediol or <i>N,N</i> -dimethylformamide	–	Salting-out with potassium carbonate	–	GC-MS EI or PCI	Carbowax 20M	EI: 100 PCI: 10	Bebiolka & Dunkel (1987)
	–	Dichloromethane extraction	–	GC-ECD, GC-MS	DBWAX	ECD: 5–10 MS: 0.5	Conacher <i>et al.</i> (1987)
	–	Dichloromethane extraction	–	GC-MS	DBWAX	0.5	Lau <i>et al.</i> (1987)
<i>n</i> -Butyl carbamate	–	Dichloromethane extraction	Extrelut	GC-MS	WCOT, DBWAX	10	Mildau <i>et al.</i> (1987)
	–	Dilution to 10% vol, dichloromethane extraction	–	Two-dimensional GC-FID	(1) CP-SIL 5 CB (2) CP-WAX 52	1	van Ingen <i>et al.</i> (1987)
[¹³ C, ¹⁵ N]-Ethyl carbamate	–	Dichloromethane extraction	Deactivated alumina	GC-TEA	DB-Wax	1.5	Canas <i>et al.</i> (1988)
	–	Dichloromethane extraction	–	GC-ion trap	Supelcowax 10	5	Clegg & Frank (1988)

Table 1.1 (continued)

Sample matrix	Internal standard	Extraction principle	Clean-up	Detection	Column	LOD (µg/L)	Reference
	Ethyl carbamate-d ₅	Distillation, dichloromethane extraction	–	GC-MS	SGE BP 20	2-5	Funch & Lisbjerg (1988)
	<i>tert</i> -Butyl carbamate and <i>n</i> -butyl carbamate (GC-FID), [¹³ C, ¹⁵ N]-ethyl carbamate	Dilution to 25% vol, dichloromethane extraction	Alumina clean-up	GC-FID GC-MS	DB-WAX Carbopack B/ Carbowax 20M	10-25 5	Pierce <i>et al.</i> (1988)
	Isopropyl carbamate	Dichloromethane extraction	–	Two-dimensional GC-TSD	BP-20, OV-1	1	Ma <i>et al.</i> (1995)
–		Dilution to 20% vol	Derivatization with 9-xanthydrol	HPLC-fluorescence detection	HP AminoQuant	4.2	Herbert <i>et al.</i> (2002)
	Ethyl carbamate-d ₅	Removal of ethanol	SPE (styrene–divinylbenzene copolymer)	GC-MS	HP-INNOWAX	3	Mirzoian & Mabud (2006)
Distilled spirits	Propyl carbamate	Evaporation with nitrogen	–	GC-MS	DB-Wax	10	Farah Nagato <i>et al.</i> (2000)
Grappa	Ethyl carbamate	Dichloromethane–ethyl acetate extraction	Derivatization with xanthydrol	GC-MS	DB 5	1	Giachetti <i>et al.</i> (1991)
Must and wine	–	–	–	FTNIR-screening	–	–	Manley <i>et al.</i> (2001)
Rice wine	Propyl carbamate	Chloroform extraction	Florisil	GC-MS	DB-Wax	–	Woo <i>et al.</i> (2001)
Spirits and mashes	–	Distillation	Chem-Elut 1020	GC-FID	(1) DB-Wax (2) DB-225	5	Wasserfallen & Georges (1987)

Table 1.1 (continued)

Sample matrix	Internal standard	Extraction principle	Clean-up	Detection	Column	LOD (µg/L)	Reference
Spirits	Pyrazole	Salting-out	–	GC–NPD	BC–CW 20 M	10	Adam & Postel (1987)
	n-Octanol	Ethyl acetate extraction	–	GC–FID	CP Wax 57 CB	10-20	Andrey (1987)
	<i>tert</i> -Butyl carbamate	Extraction with <i>n</i> -hexane–ethyl acetate mixture	Extrelut	GC–FID, GC–N-TSD	Stabilwax	50	Drexler & Schmid (1989)
	Propyl carbamate	–	–	GC–MS	FSOT	5	MacNamara <i>et al.</i> (1989)
	–	Salting-out	Filtration over activated carbon	GC–NPD, GC–FID	HP 19091 F-115 or Carbowax 20M	LOQ:1-5	Adam & Postel (1990)
	Ethyl carbamate-d ₅	Dichloromethane extraction	Extrelut	GC–MS/MS	CP-wax	10	Lachenmeier <i>et al.</i> (2005a)
	–	–	–	FTIR screening	–	–	Lachenmeier (2005)
	Ethyl carbamate-d ₅	Dilution 1:10	HS–SPME	GC–MS/MS	Stabilwax	30	Lachenmeier <i>et al.</i> (2006)
Whisky, sherry, port, wine	[¹³ C, ¹⁵ N]-Ethyl carbamate	Dichloromethane extraction	–	GC–MS/MS CI.	Carbowax SP-10	1	Brumley <i>et al.</i> (1988)
Wines and spirits	[¹³ C, ¹⁵ N]-Ethyl carbamate	Dichloromethane extraction	Florisil	GC–ECD, GC–MS/MS	Carbowax 20M Stabilwax		Cairns <i>et al.</i> (1987)
Wine	–	Chloroform extraction	Florisil	GC–ECD	GCQ, OV-17, Carbowax 1540	<100	Walker <i>et al.</i> (1974)

Table 1.1 (continued)

Sample matrix	Internal standard	Extraction principle	Clean-up	Detection	Column	LOD (µg/L)	Reference
	Propyl carbamate	Extraction with Soxhlet apparatus	–	GC-MS	DB-Wax	–	Fauhl & Wittkowski (1992)
	–	Dichloromethane extraction	Chem-Elut or Extrelut	GC-N-TEA	DB-Wax	1-2	Sen <i>et al.</i> (1992)
	Propyl carbamate	Dilution, dichloromethane extraction	Diatomaceous earth columns	GC-MS	Carbowax 20M	–	European Commission (1999)
	[¹³ C, ¹⁵ N]-Ethyl carbamate	Removal of ethanol, dilution	SPE (styrene-divinylbenzene copolymer)	Two-dimensional GC-MS	HP-5MS DB-WAX	0.1	Jagerdeo <i>et al.</i> (2002)
	Propyl carbamate	–	MS-SPME	GC-MS	DB-Wax	9.6	Whiton & Zeecklein (2002)
Alcoholic beverages and foods	[¹³ C, ¹⁵ N]-Ethyl carbamate	Dichloromethane extraction	–	GC-MI/FTIR	DBWAX-30W	10	Mossoba <i>et al.</i> (1988)
Alcoholic beverages, fermented foods	<i>n</i> -Butyl carbamate	Pre-extraction with petroleum ether, dichloromethane extraction	Deactivated alumina	GC-FID	DB-Wax	6,7	Wang <i>et al.</i> (1997); Wang & Gow (1998)
Bread	Ethyl carbamate-d ₅	Dichloromethane extraction	Extrelut	GC-MS/MS	EC-WAX	0.6	Hamlet <i>et al.</i> (2005)
Fermented foods	–	Dichloromethane extraction	Acid-celite column	GC-MS	CBP-20	0.5	Hasegawa <i>et al.</i> (1990)
Fermented Korean foods and beverages	Propyl carbamate	Various procedures	Various procedures	GC-MS	DB-Wax	11	Kim <i>et al.</i> (2000)

Table 1.1 (continued)

Sample matrix	Internal standard	Extraction principle	Clean-up	Detection	Column	LOD (µg/L)	Reference
Soya sauce	Propyl carbamate	Dichloromethane extraction	Extrelut	GC-MS	DB-Wax	1	Fauhl <i>et al.</i> (1993)
	–	Dichloromethane extraction	Celite columns	GC-MS	Supelcowax	0.5	Matsudo <i>et al.</i> (1993)
Blood	–	Before and after alkaline hydrolysis	–	Titration with 0.1 N sodium thiosulfate	–	–	Archer <i>et al.</i> (1948)
	[¹³ C, ¹⁵ N]-Ethyl carbamate	Dichloromethane extraction	Chem-Elut 1000M	GC-MS	DB-WAX, DB-1	20	Hurst <i>et al.</i> (1990)

CI, chemical ionization; ECD, electrolytic conductivity detector; EI, electron ionization; FID, flame ionization detection; FTIR, Fourier transform infrared spectroscopy; FTNIR, Fourier transform near-infrared spectroscopy; GC, gas chromatography; HPLC, high-performance liquid chromatography; LOD, limit of detection; MI, matrix isolation; MS, mass spectrometry; NPD, nitrogen/phosphorus detector; PCI, positive chemical ionization; SPME, solid-phase microextraction; TEA, thermal energy analyser; TSD, thermoionic-specific detection

Solid-phase microextraction has recently emerged as a versatile solvent-free alternative to conventional extraction procedures. Ethyl carbamate has been analysed by HS–solid-phase microextraction only in wine samples (Whiton & Zöcklein, 2002) and spirits (Lachenmeier *et al.*, 2006).

The procedures that combine sample extraction and subsequent GC–MS or GC–MS–MS are regarded as references for the analysis of ethyl carbamate in alcoholic beverages (Lachenmeier, 2005). Increasing requirements and cost pressures have forced both government and commercial food-testing laboratories to replace traditional reference methods with faster and more economical systems. Fourier-transform infrared spectroscopy, in combination with multivariate data analysis, has shown great potential for expeditious and reliable screening analysis of alcoholic beverages. The analysis of ethyl carbamate found in wine samples using Fourier-transform near-infrared spectroscopy was evaluated by Manley *et al.* (2001). Fourier-transform infrared spectroscopy in combination with partial least squares regression was applied to the screening analysis of ethyl carbamate in stone-fruit spirits (Lachenmeier, 2005).

1.2 Production and use

Ethyl carbamate can be made by the reaction of ethanol and urea or by warming urea nitrate with ethanol and sodium nitrite (Budavari, 2000). Another possible method is via addition of ethanol to trichloroacetyl isocyanate (Kocovský, 1986).

Production of ethyl carbamate was predominantly reported in the first half of the twentieth century. Ethyl carbamate has been produced commercially in the USA for at least 30 years (Tariff Commission, 1945). A major use of methyl and ethyl carbamate has been for the manufacture of meprobamate (Adams & Baron, 1965), and the spectacular success of this drug as a tranquilizer in the 1950s resulted in a demand for the commercial production of these intermediates. Ethyl carbamate had been used as a crease-resistant finish in the textile industry, as a solvent, in hair conditioners, in the preparation of sulfamic acids, as an extractant of hydrocarbons from crude oil and as a food flavour-enhancing agent (Adams & Baron, 1965). No data on the present use of ethyl carbamate in industry were available to the Working Group.

Ethyl carbamate was used in medical practice as a hypnotic agent at the end of nineteenth century but this use was discontinued after barbiturates became available. It was also tested for the treatment of cancers (Paterson *et al.*, 1946; Hirschboeck *et al.*, 1948), or used as a co-solvent in water for dissolving water-insoluble analgesics used for post-operative pain (Nomura, 1975). Ethyl carbamate has also been used in human medicine as an antileukaemic agent at doses of up to 3 g per day for the treatment of multiple myeloma (Adams & Baron, 1965). No evidence was available to the Working Group that ethyl carbamate is currently used in human medicine.

Ethyl carbamate is widely used in veterinary medicine as an anaesthetic for laboratory animals (Hara & Harris, 2002).

1.3 Occurrence and exposure

The occurrence of and exposure to ethyl carbamate in food have been reviewed (Battaglia *et al.*, 1990; Zimmerli & Schlatter, 1991).

Ethyl carbamate has been detected in many types of fermented foods and beverages. The levels in wine and beer are in the microgram per litre range (Tables 1.2 and 1.3). Higher levels have been found in spirits, especially stone-fruit spirits, up to the milligram per litre range (Table 1.4). Ethyl carbamate has also been found in bread (Table 1.5). It may occur in fruit and vegetable juices at very low concentrations (< 1 µg/L) (Table 1.6). Its occurrence in other fermented food products (most notably fermented Asian products, such as soy sauce) is shown in Table 1.7.

In the past 20 years, major research has been carried out to identify the precursors of ethyl carbamate (Table 1.8) and develop methods for its reduction. One of the most established sources of ethyl carbamate is urea, which may be formed during the degradation of arginine by yeast. Arginase hydrolyses l-arginine to l-ornithine and urea (Schehl *et al.*, 2007), and urea is secreted by the yeast into the medium where it reacts with ethanol to form ethyl carbamate (Ough *et al.*, 1988a; Kitamoto *et al.*, 1991; An & Ough, 1993). The addition of urease has been shown to reduce the content of ethyl carbamate in wine and other fermented products (Kobashi *et al.*, 1988; Ough & Trioli, 1988; Tegmo-Larsson & Henick-Kling, 1990; Kim *et al.*, 1995; Kodama & Yotsuzuka, 1996).

Ethyl carbamate may also be formed from cyanide. This may explain its high concentrations in stone-fruit spirits. The removal of cyanogenic glycosides such as amygdalin in stone-fruit by enzymatic action (mainly β -glucosidase) leads to the formation of cyanide (Lachenmeier *et al.*, 2005b). Cyanide is oxidized to cyanate, which reacts with ethanol to form ethyl carbamate (Wucherpfennig *et al.*, 1987; Battaglia *et al.*, 1990; MacKenzie *et al.*, 1990; Taki *et al.*, 1992; Aresta *et al.*, 2001). The wide range of concentrations of ethyl carbamate in stone-fruit spirits reflects its light- and time-dependent formation after distillation and storage (Andrey, 1987; Mildau *et al.*, 1987; Baumann & Zimmerli, 1988; Zimmerli & Schlatter, 1991; Suzuki *et al.*, 2001).

1.4 Regulations, guidelines and preventive actions

Public health concern regarding ethyl carbamate in food, and especially in alcoholic beverages, began in 1985 when relatively high levels were detected by Canadian authorities in alcoholic beverages, mainly in spirit drinks imported from Germany (Conacher & Page, 1986). Subsequently, Canada established an ethyl carbamate guideline of 30 µg/L for table wines, 100 µg/L for fortified wines, 150 µg/L for distilled spirits and 400 µg/L for fruit spirits (Conacher & Page, 1986). The Canadian guidelines were adopted by many other countries. The *Codex alimentarius* gives no specific standards for ethyl carbamate in food.

Table 1.2 Occurrence of ethyl carbamate in wine and fortified wine

Product	Year	No. of samples	Ethyl carbamate (µg/L)		Reference
			Mean	Range	
Wine	1951–89	127	0–5	0–48.6	Sponholz <i>et al.</i> (1991)
Wine	1988				Clegg <i>et al.</i> (1988)
White wines		196		<10–>100	
Red wines		51		<10–100	
Sparkling wines		14		–	
Wine coolers		2		–	
Fortified wines					
Sherries		256		<10–>200	
Ports		57		<10–>200	
Vermouths		7		<10–200	
Sherry	1985–87	12	32–33	<5–60	Dennis <i>et al.</i> (1989)
Wine		31	6	1–18	
Wine	1993				Sen <i>et al.</i> (1993)
White wines		16		ND–24	
Red wines		7		1–14	
Sake		2		3–29	
Sherry		6		28–69	
Fortified wines	1988–90	14	30	7–61	Vahl (1993)
Wine		57	7	<3–29	
Italian wine	2000	90			Cerutti <i>et al.</i> (2000)
Red				6–22	
White				6–16	
Rosé				7–15	
Brazilian wine	2002				Francisquetti <i>et al.</i> (2002)
Cabernet		30	10.6	2–31.8	
Sauvignon					
Merlot		17	6.6	1.8–32.4	
Gamay		3	4.5	3.4–6.5	
Pinot blanc		5	7.4	2.7–10.1	
Generic reds		9	16.6	2.4–36.2	
Gewürztraminer		12	10.1	1.2–30.5	
Italian Riesling		10	13.0	1.0–39.1	
Chardonnay		5	19.3	1.7–70	
Semillon		3	14.5	3.5–20.5	
Generic whites		3	4.8	4.7–5.1	
Common reds		10	5.1	2.1–9	
Sparkling wines		17	7.6	2.1–24.6	
Spanish red wine	2004	36		0–25	Uthurry <i>et al.</i> (2004)
Wine	2006	3	4.9	1.7–11.7	Ha <i>et al.</i> (2006)

ND, not detected

Table 1.3 Occurrence of ethyl carbamate in beer

Product	Year	No. of samples	Ethyl carbamate (µg/L)		Reference
			Mean	Range	
Beer	1985–87	15	0.1–1.1	<1–1.8	Dennis <i>et al.</i> (1989)
Beer	1989				Canas <i>et al.</i> (1989)
Domestic		33	0.24	ND–0.8	
Imported		36	2.8	2.1–3.5	
Danish Beer	1988–90	50	3	<0.2–6.6	Vahl (1993)
Alcohol-free beer	1994	4	0.3	0.1–0.7	Groux <i>et al.</i> (1994)
Beer		5	2.7	0.9–4.7	Groux <i>et al.</i> (1994)
Beer	1997				Dennis <i>et al.</i> (1997)
Draught		20		<1	
Canned		26		0.4–2.5	
Bottled		51		<1–14.7	
Home-brewed beer		32		<1–9	
Beer	2006	6	0.5	0.5–0.8	Ha <i>et al.</i> (2006)

ND, not detected

However, the general standard for contaminants and toxins in foods demands that contaminant levels shall be as low as reasonably achievable and that contamination may be reduced by applying appropriate technology in food production, handling, storage, processing and packaging (FAO/WHO, 2008).

Many preventive actions to avoid ethyl carbamate formation in food and beverages have been proposed (Table 1.9). For beverages such as wine and sake, the preventive measures have concentrated on yeast metabolism, whereas for stone-fruit spirits, research has been centred on reducing the precursor, cyanide. In addition, measures of good manufacturing practice such as the use of high-quality, unspoiled raw materials and high standards of hygiene during fermentation and storage of the fruit mashes, mashing and distillation must be optimized. To avoid the release of cyanide, it is essential to avoid breaking the stones, to minimize exposure to light and to shorten storage time. Some authors have proposed the addition of enzymes to decompose cyanide or a complete de-stoning of the fruit before mashing. The mashes have to be distilled slowly with an early switch to the tailing-fraction. Further preventive actions are the addition of patented copper salts to precipitate cyanide in the mash, distillation using copper catalysts or the application of steam washers (Zimmerli & Schlatter, 1991).

Table 1.4 Occurrence of ethyl carbamate in spirits

Product	Year	No. of samples	Ethyl carbamate (µg/L)		Reference
			Mean	Range	
Canadian whiskey	1988	18		<50–150	Clegg <i>et al.</i> (1988)
Rum		20		<50–150	
Vodka		5		<50	
Gin		4		<50	
Scotch whisky		7		<50–150	
Bourbon whiskey		19		<50–>150	
Fruit spirits and liqueurs		123		<50–>400	
Scotch whisky	1985–87	11	44	19–90	Dennis <i>et al.</i> (1989)
Imported whiskey		7	69–70	<5–206	
Vodka		3	ND	ND ^a	
Gin		3	ND	ND ^a	
Fruit spirit		4	41–42	<5–139	
Port		4	18	14–21	
Liqueur		8	129	9–439	
Whisky	1993	6	75.7	26–247	Sen <i>et al.</i> (1993)
Rye		1		8	
Bourbon		4		44–208	
Vodka		1		ND	
Gin		1		0.5	
Rum		1		19	
Fruit spirit		3		104–2344	
Apricot spirit		1		11	
Armagnac		2		410–432	
Other brandies		3		25–28	
Spirits	1988–90	22	534	<5–5103	Vahl (1993)
Grappa	2000	6		75–190	Cerutti <i>et al.</i> (2000)
Fruit spirit	2006	7	196.7	3.5–689.9	Ha <i>et al.</i> (2006)
Whisky		5	20.1	13.9–30.0	
Cheongju		5	20.2	8.4–30.3	
Korean style spirits	2000	10	3.4	ND–15.4	Kim <i>et al.</i> (2000)
Stone-fruit spirits	1986–2004	631	1400	10–18 000	Lachenmeier <i>et al.</i> (2005b)

ND, not detected; ^a Detection limit at 5 µg/L

Table 1.5 Occurrence of ethyl carbamate in bread

Product	Year	No. of samples	Ethyl carbamate (µg/kg)		Reference
			Mean	Range	
Bread	1988	9	ND	ND ^a	Dennis <i>et al.</i> (1989)
Bread	1989	30			Canas <i>et al.</i> (1989)
White			3.0	ND–8	
Wheat			1.2	ND–4	
Other			0.9	ND–4	
Bread	1993	12	3.1	1.6–4.8	Sen <i>et al.</i> (1993)
Light toast	1993	12	4.3	1.3–10.9	
Dark toast	1993	12	15.7	4.9–29.2	
Bread	1988–90	33	3.5	0.8–12	Vahl (1993)
Bread	1994	48	5.2	0.5–27	Groux <i>et al.</i> (1994)

ND, not detected; ^a Detection limit at 5 µg/kg

Table 1.6 Occurrence of ethyl carbamate in juices

Product	Year	No. of samples	Ethyl carbamate (µg/L)		Reference
			Mean	Range	
Freshly pressed grape juices	1990	15		19–54	Tegmo-Larsson & Henick-Kling (1990)
Apple and pear juice	1994	6	ND	ND ^a	Groux <i>et al.</i> (1994)
Citrus juice		7	0.1	0–0.1	
Grape juice		6	0.1	0–0.2	
Other fruit juices		8	0.1	0–0.2	
Vegetable juice		3	0.1	0–0.1	

ND, not detected; ^a Detection limit at 0.06 ppb = 0.06 µg/L

Table 1.7 Occurrence of ethyl carbamate in miscellaneous fermented foods

Product	Year	No. of samples	Ethyl carbamate (µg/kg)		References
			Mean	Range	
Cheese	1989	16	ND	ND	Canas <i>et al.</i> (1989)
Yoghurt		12	0.4	ND–4	
Tea		6	ND	ND	
Yoghurt	1988	9	0–1	<1–<1	
Cheese		19	0.6–5.1	<5–6	
Soya sauce	1993	10		ND–59	Sen <i>et al.</i> (1993)
Yoghurt and buttermilk		14		ND–0.4	
Yoghurt and other acidified milk products	1988–90	19	0.2	<0.1–0.3	Vahl (1993)
Kimchi	2000	20	3.5	ND–16.2	Kim <i>et al.</i> (2000)
<i>Soy sauce</i>					
Regular		5	14.6	ND–19.5	
Traditional type		15	17.1	ND–73.3	
Soybean paste		7	2.3	ND–7.9	
Vinegar		5	1.2	0.3–2.5	
Soju	2006	7	3.0	0.8–10.1	Ha <i>et al.</i> (2006)
Takju		7	0.6	0.4–0.9	

ND, not detected

Table 1.8 Precursors of ethyl carbamate in different food matrices and factors that influence its formation

Precursor	Food matrix	Reference
Diethyl dicarbonate (used as food additive)	Orange juice, white wine, beer	Löfroth & Gejvall (1971)
Carbamyl phosphate (produced by yeasts)	Wine, fermented foods, bread	Ough (1976a)
Diethyl dicarbonate (used as food additive)	Wine	Ough (1976b)
Cyanide, vicinal dicarbonyl compounds	Model systems	Baumann & Zimmerli (1986b)
Carbamyl phosphate and ethyl alcohol, light	Wine	Christoph <i>et al.</i> (1987)
Cyanide, benzaldehyde, light	Distilled products	Christoph <i>et al.</i> (1988)
Light	Distilled products	Baumann & Zimmerli (1988)
Urea	Wine	Ough & Trioli (1988)
Urea, citrulline, <i>N</i> -carbamyl α -amino acids, <i>N</i> -carbamyl β -amino acid, allantoin, carbamyl phosphate	White and red wines	Ough <i>et al.</i> (1988a)
Amino acids, urea, ammonia	Chardonnay juice fermentation	Ough <i>et al.</i> (1988b)
Urea, copper, carbamyl phosphate, citrulline	Wine	Sponholz <i>et al.</i> (1991)
Cyanate, cyanide, cyanohydrin, copper cyanide complexes	Grain whisky	Aylott <i>et al.</i> (1990)
Cyanide related species (cyanide, copper cyanide complex, lactonitrile, cyanate, thiocyanate)	Scotch grain whisky	MacKenzie <i>et al.</i> (1990)
Cyanide	Grain-based spirits	Cook <i>et al.</i> (1990)
Cyanide	Grain-based spirits	McGill & Morley (1990)
Temperature, light	Wine	Tegmo-Larsson & Spittler (1990)
Cyanate	Alcoholic beverages	Taki <i>et al.</i> (1992)
Yeast strain, arginine, urea	Fortified wine	Daudt <i>et al.</i> (1992)
Isocyanate	Wine distillates	Boulton (1992)
Cyanide, copper, light,	Stone-fruit distillates	Kaufmann <i>et al.</i> (1993)
Manufacturing conditions	Soya bean tempe	Nout <i>et al.</i> (1993)
Urea	Wine	An & Ough (1993)

Table 1.8 (continued)

Precursor	Food matrix	Reference
Urea, citrulline	Wine	Stevens & Ough (1993)
Urea	Wine	Kodama <i>et al.</i> (1994)
Citrulline, arginine degradation	Wine	Liu <i>et al.</i> (1994)
Yeast arginase activity	Port	Watkins <i>et al.</i> (1996)
Azodicarbonamide (used as food additive)	Bread, beer	Dennis <i>et al.</i> (1997)
Citrulline	Wine	Mira de Orduña <i>et al.</i> (2000)
Citrulline	Model fortified wines	Azevedo <i>et al.</i> (2002)
Arginine	Wine	Arena <i>et al.</i> (2002)
Arginine	Korean soy sauce	Koh <i>et al.</i> (2003)
Storage time, temperature	Wine	Hasnip <i>et al.</i> (2004)
Arginine, citrulline	Wine	Arena & Manca de Nadra (2005)
Cyanide	Stone-fruit spirits	Lachenmeier <i>et al.</i> (2005b)
Fruit types, fermentation conditions	Fruit mashes	Balcerek & Szopa (2006)
Selected yeasts, different conditions (temperature, pH)	Red wine	Uthurry <i>et al.</i> (2006)
Yeast strain, arginine	Stone-fruit distillates	Schehl <i>et al.</i> (2007)

Table 1.9 Procedures for reducing ethyl carbamate concentration in different food matrices

Procedure	Food matrix	Reference
Modification of vineyard procedures	Wine	Butzke & Bisson (1997)
Use of commercial yeast strains		
Urease treatment		
Use of non-arginine-degrading oenococci	Wine	Mira de Orduña <i>et al.</i> (2001)
Metabolic engineering of <i>Saccharomyces cerevisiae</i>	Wine	Coulon <i>et al.</i> (2006)
Malolactic fermentation with pure cultures at low pH values (<3.5)	Wine	Terrade & Mira de Orduña (2006)
Removal of urea with an acid urease	Sake	Kobashi <i>et al.</i> (1988)
Genetic engineering of yeast	Sake	Kitamoto <i>et al.</i> (1991)
Non-urea producing yeast	Sake	Kitamoto <i>et al.</i> (1993)
Non-urea producing yeast	Sake	Yoshiuchi <i>et al.</i> (2000)
Application of acid urease	Takju	Kim <i>et al.</i> (1995)
Application of acid urease	Sherry	Kodama & Yotsuzuka (1996)
Precipitation of cyanide (steam washer)	Stone-fruit distillates	Nusser <i>et al.</i> (2001)
Application of cyanide catalyst	Stone-fruit distillates	Pieper <i>et al.</i> (1992a,b)
Optimization of distillation conditions		
Dark storage	Stone-fruit distillates	Christoph & Bauer-Christoph (1998, 1999)
Separation of cyanide		
Complete prevention of ethyl carbamate by state-of-the-art production technology	Stone-fruit distillates	Lachenmeier <i>et al.</i> (2005b)
De-stoning of the fruits	Stone-fruit distillates	Schehl <i>et al.</i> (2005)
Automatic rinsing of the stills, copper catalysts, separation of tailings, no re-distillation of tailings	Stone-fruit distillates	Weltring <i>et al.</i> (2006)
Yeast with reduced arginase activity	Stone-fruit distillates	Schehl <i>et al.</i> (2007)

Research on ethyl carbamate in food has led to a significant reduction in its content during the past 20 years. The use of additives that might be precursors of ethyl carbamate has been forbidden in most countries. For stone-fruit spirits — the most problematic food group — the few large distilleries that produce for the mass market have all introduced the good manufacturing practices described above and produce stone-fruit distillates that have only traces of ethyl carbamate. The current problem of ethyl carbamate encompasses in particular small distilleries that have not introduced improved technologies (Lachenmeier *et al.*, 2005b).

1.5 References

Adams P & Baron FA (1965). Esters of carbamic acid. *Chem Rev*, 65: 567–602. doi:10.1021/cr60237a002

Adam L & Postel W (1987). [Determination by gas chromatography of ethyl carbamate (urethane) in spirits.]*Branntweinwirtschaft*, 127: 66–68.

Adam L & Postel W (1990). [Determination of ethyl carbamate in extract-containing or extract-free spirits.]*Branntweinwirtschaft*, 130: 170–174.

An D & Ough CS (1993). Urea excretion and uptake by wine yeasts as affected by various factors. *Am J Enol Viticolt*, 44: 35–40.

Andrey D (1987). A simple gas chromatography method for the determination of ethylcarbamate in spirits. *Z Lebensm Unters Forsch*, 185: 21–23. doi:10.1007/BF01083335 PMID:3617935

Archer HE, Chapman L, Rhoden E, Warren FL (1948). The estimation of urethane (ethyl carbamate) in blood. *Biochem J*, 42: 58–59. PMID:16748249

Arena ME & Manca de Nadra MC (2005). Influence of ethanol and low pH on arginine and citrulline metabolism in lactic acid bacteria from wine. *Res Microbiol*, 156: 858–864. doi:10.1016/j.resmic.2005.03.010 PMID:15939575

Arena ME, Manca de Nadra MC, Muñoz R (2002). The arginine deiminase pathway in the wine lactic acid bacterium *Lactobacillus hilgardii* X1B: structural and functional study of the arcABC genes. *Gene*, 301: 61–66. doi:10.1016/S0378-1119(02)01083-1 PMID:12490324

Aresta M, Boscolo M, Franco DW (2001). Copper(II) catalysis in cyanide conversion into ethyl carbamate in spirits and relevant reactions. *J Agric Food Chem*, 49: 2819–2824. doi:10.1021/jf001346w PMID:11409971

Aylott RI, Cochrane GC, Leonard MJ *et al.* (1990). Ethyl carbamate formation in grain based spirits. I. Post-distillation ethyl carbamate formation in a maturing grain whisky. *J Inst Brewing*, 96: 213–221.

Azevedo Z, Couto JA, Hogg T (2002). Citrulline as the main precursor of ethyl carbamate in model fortified wines inoculated with *Lactobacillus hilgardii*: a marker of the levels in a spoiled fortified wine. *Lett Appl Microbiol*, 34: 32–36. doi:10.1046/j.1472-765x.2002.01045.x PMID:11849489

Bailey R, North D, Myatt D, Lawrence JF (1986). Determination of ethyl carbamate in alcoholic beverages by methylation and gas chromatography with nitrogen–phosphorus thermionic detection. *J Chromatogr A*, 369: 199–202. doi:10.1016/S0021-9673(00)90116-X

Balcerek M & Szopa JS (2006). Ethyl carbamate content in fruit distillates. *Zywnosc*, 13: 91–101.

Battaglia R, Conacher HBS, Page BD (1990). Ethyl carbamate (urethane) in alcoholic beverages and foods: a review. *Food Addit Contam*, 7: 477–496. PMID:2203651

Baumann U & Zimmerli B (1986a). Gas chromatographic determination of urethane (ethyl carbamate) in alcoholic beverages. *Mitt Geb Lebensm Hyg*, 77: 327–332.

Baumann U & Zimmerli B (1986b). Formation of ethyl carbamate in alcoholic beverages. *Schweiz Z Obst-Weinbau*, 122: 602–607.

Baumann U & Zimmerli B (1988). Accelerated ethyl carbamate formation in spirits. *Mitt Geb Lebensm Hyg*, 79: 175–185.

Bebiolka H & Dunkel K (1987). Determination of ethyl carbamate in alcoholic beverages through capillary gas chromatography/mass spectrometry. *Dtsch Lebensmitt Rundsch*, 83: 75–76.

Boulton R (1992). The formation of ethyl carbamate from isocyanate and ethanol at elevated temperatures. In: Cantagrel R, editor, *1er Symposium Scientifique International de Cognac*, Paris, Lavoisier-Tec & Doc, pp. 339–343.

Brumley WC, Canas BJ, Perfetti GA *et al.* (1988). Quantitation of ethyl carbamate in whiskey, sherry, port, and wine by gas chromatography/tandem mass spectrometry using a triple quadrupole mass spectrometer. *Anal Chem*, 60: 975–978. doi:10.1021/ac00161a006 PMID:3407951

Budavari S, editor (2000). *The Merck Index*, 12th Ed., Boca Raton, FL, Chapman & Hall/CRC.

Butzke CE, Bisson LF (1997). US Food and Drug Administration: Ethyl Carbamate Preventive Action Manual. Available at: <http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/ChemicalContaminants/EthylCarbamateUrethane/ucm078546.htm>

Cairns T, Siegmund EG, Luke MA, Doose GM (1987). Residue levels of ethyl carbamate in wines and spirits by gas chromatography and mass spectrometry/mass spectrometry. *Anal Chem*, 59: 2055–2059. doi:10.1021/ac00144a010 PMID:3674424

Canas BJ, Haverty DC, Joe FL Jr (1988). Rapid gas chromatographic method for determining ethyl carbamate in alcoholic beverages with thermal energy analyzer detection. *J Assoc Off Anal Chem*, 71: 509–511. PMID:3391950

Canas BJ, Haverty DC, Robinson LR *et al.* (1989). Ethyl carbamate levels in selected fermented foods and beverages. *J Assoc Off Anal Chem*, 72: 873–876. PMID:2592308

Canas BJ, Joe FL Jr, Diachenko GW, Burns G (1994). Determination of ethyl carbamate in alcoholic beverages and soy sauce by gas chromatography with mass selective detection: Collaborative study. *J Assoc Off Anal Chem*, 77: 1530–1536.

Cerutti G, Pavanello F, Bolognini L *et al.* (2000). Ethyl carbamate in wines and grappa produced in Veneto province *Imbottigliamento*, 23: 36–40.

Christoph N & Bauer-Christoph C (1998). [Measures to reduce the content of ethyl carbamate during production of stone-fruit spirits (I).] *Kleinbrennerei*, 50: 9–13.

Christoph N & Bauer-Christoph C (1999). [Measures for reducing the content of ethyl carbamate during production of stone-fruit spirits (II).] *Kleinbrennerei*, 51: 5–9.

Christoph N, Schmitt A, Hildenbrand K (1987). [Ethyl carbamate in fruit spirits (Part 1).] *Alkoholindustrie*, 100: 369–373.

Christoph N, Schmitt A, Hildenbrand K (1988). [Ethyl carbamate in fruit spirits (Part 3).] *Alkoholindustrie*, 101: 342–347.

Clegg BS & Frank R (1988). Detection and quantitation of trace levels of ethyl carbamate in alcoholic beverages by selected ion monitoring. *J Agric Food Chem*, 36: 502–505. doi:10.1021/jf00081a024

Clegg BS, Frank R, Ripley BD *et al.* (1988). Contamination of alcoholic products by trace quantities of ethyl carbamate (urethane). *Bull Environ Contam Toxicol*, 41: 832–837. doi:10.1007/BF02021042 PMID:3233382

Conacher HBS, Page BD (1986). Ethyl carbamate in alcoholic beverages: A Canadian case history. In: *Proceedings of Euro Food Tox II*, Schwerzenbach: European Society of Toxicology, pp. 237–242.

Conacher HBS, Page BD, Lau BPY *et al.* (1987). Capillary column gas chromatographic determination of ethyl carbamate in alcoholic beverages with confirmation by gas chromatography/mass spectrometry. *J Assoc Off Anal Chem*, 70: 749–751. PMID:3624188

Cook R, McCaig N, McMillan J-MB, Lumsden WB (1990). Ethyl carbamate formation in grain-based spirits. III. The primary source. *J Inst Brew*, 96: 233–244.

Coulon J, Husnik JI, Inglis DL *et al.* (2006). Metabolic engineering of *Saccharomyces cerevisiae* to minimize the production of ethyl carbamate in wine. *Am J Enol Vitic*, 57: 113–124.

Daudt CE, Ough CS, Stevens D, Herraiz T (1992). Investigations into ethyl carbamate, *n*-propyl carbamate, and urea in fortified wines. *Am J Enol Vitic*, 43: 318–322.

Dennis MJ, Howarth N, Massey RC *et al.* (1986). Method for the analysis of ethyl carbamate in alcoholic beverages by capillary gas chromatography. *J Chromatogr A*, 369: 193–198. doi:10.1016/S0021-9673(00)90115-8

Dennis MJ, Howarth N, Massey RC *et al.* (1988). Ethyl carbamate analysis in fermented products — A comparison of measurements of mass-spectrometry, thermal-energy analyzer, and hall electrolytic conductivity detector. *J Res Natl Bur Stand*, 93: 249–251.

Dennis MJ, Howarth N, Key PE *et al.* (1989). Investigation of ethyl carbamate levels in some fermented foods and alcoholic beverages. *Food Addit Contam*, 6: 383–389. PMID:2721787

Dennis MJ, Massey RC, Pointer M, Willetts P (1990). Cooperative trial studies on the analysis of ethyl carbamate using capillary gas chromatography. *J High Resolut Chromatogr Chromatogr Commun*, 13: 247–251. doi:10.1002/jhrc.1240130407

Dennis MJ, Massey RC, Ginn R *et al.* (1997). The contribution of azodicarbonamide to ethyl carbamate formation in bread and beer. *Food Addit Contam*, 14: 101–108. PMID:9059589

Drexler W & Schmid ER (1989). A gas chromatographic method for the determination of ethyl carbamate in spirits. *Ernährung*, 13: 591–594.

Dyer RH (1994). Determination of ethyl carbamate (urethane) in alcoholic beverages using capillary gas chromatography with thermal energy analyzer detection: Collaborative study. *J Assoc Off Anal Chem*, 77: 64–67.

European Commission (1999). Determination of ethyl carbamate in wine (Community methods for the analysis of wine). *Off J Europ Comm*, L099:12–14.

FAO/WHO (2008) *Codex alimentarius*, 18th ed. Available at: www.codexalimentarius.net/web/procedural_manual.jsp [accessed 04.01.10]

Farah Nagato LA, Silva OA, Yonamine M, Penteado MD (2000). Quantitation of ethyl carbamate (EC) by gas chromatography and mass spectrometric detection in distilled spirits. *Alimentaria*, 31: 31–36.

Fauhl C & Wittkowski R (1992). Determination of ethyl carbamate in wine by GC–SIM–MS after continuous extraction with diethyl ether. *J High Resolut Chromatogr Chromatogr Commun.*, 15: 203–205. doi:10.1002/jhrc.1240150315

Fauhl C, Catsburg R, Wittkowski R (1993). Determination of ethyl carbamate in soy sauces. *Food Chem*, 48: 313–316. doi:10.1016/0308-8146(93)90147-8

Francisquetti EL, Vanderlinde R, Carrau JL, Moyna P (2002). Ethyl carbamate content in wines produced and commercialized in southern Brazil. *Acta farm bonaerense*, 21: 201–204.

Funch F & Lisbjerg S (1988). Analysis of ethyl carbamate in alcoholic beverages. *Z Lebensm Unters Forsch*, 186: 29–32. doi:10.1007/BF01027176

Giachetti C, Assandri A, Zanol G (1991). Gas-chromatographic mass-spectrometric determination of ethyl carbamate as the xanthylamide derivative in Italian aqua vitae (grappa) samples. *J Chromatogr A*, 585: 111–115. doi:10.1016/0021-9673(91)85063-L

Groux MJ, Zoller O, Zimmerli B (1994). [Ethyl carbamate in bread and beverages.] *Mitt Geb Lebensm Hyg*, 85: 69–80.

Ha MS, Hu SJ, Park HR *et al.* (2006). Estimation of Korean adult's daily intake of ethyl carbamate through Korean commercial alcoholic beverages based on the monitoring. *Food Sci Biotechnol*, 15: 112–116.

Hamlet CG, Jayaratne SM, Morrison C (2005). Application of positive ion chemical ionisation and tandem mass spectrometry combined with gas chromatography to the trace level analysis of ethyl carbamate in bread. *Rapid Commun Mass Spectrom*, 19: 2235–2243. doi:10.1002/rcm.2047 PMID:16015678

Hara K & Harris RA (2002). The anesthetic mechanism of urethane: the effects on neurotransmitter-gated ion channels. *Anesth Analg*, 94: 313–318. doi:10.1097/00000539-200202000-00015 PMID:11812690

Hasegawa Y, Nakamura Y, Tonogai Y *et al.* (1990). Determination of ethyl carbamate in various fermented foods by selected ion monitoring. *J Food Prot*, 53: 1058–1061.

Hasnip S, Caputi A, Crews C, Brereton P (2004). Effects of storage time and temperature on the concentration of ethyl carbamate and its precursors in wine. *Food Addit Contam*, 21: 1155–1161. doi:10.1080/02652030400019851 PMID:15799560

Herbert P, Santos L, Bastos M *et al.* (2002). New HPLC method to determine ethyl carbamate in alcoholic beverages using fluorescence detection. *J Food Sci*, 67: 1616–1620. doi:10.1111/j.1365-2621.2002.tb08693.x

Hesford F & Schneider K (2001). Validation of a simple method for the determination of ethyl carbamate in stone fruit brandies by GC-MS. *Mitt Lebensm Hyg*, 92: 250–259.

Hirschboeck JS, Lindert MC, Chase J, Calvy TL (1948). Effects of urethane in the treatment of leukemia and metastatic malignant tumors. *J Am Med Assoc*, 136: 90–95. PMID:18921082

Hurst HE, Kemper RA, Kurata N (1990). Measurement of ethyl carbamate in blood by capillary gas chromatography/mass spectrometry using selected ion monitoring. *Biomed Environ Mass Spectrom*, 19: 27–31. doi:10.1002/bms.1200190104 PMID:2306547

Jagerdeo E, Dugar S, Foster GD, Schenck H (2002). Analysis of ethyl carbamate in wines using solid-phase extraction and multidimensional gas chromatography/mass spectrometry. *J Agric Food Chem*, 50: 5797–5802. doi:10.1021/jf025559s PMID:12358441

Kaufmann T, Tuor A, Dörig H (1993). Studies on the production of light-stable stone-fruit brandies with reduced urethane content. *Mitt Geb Lebensm Hyg*, 84: 173–184.

Kim E-J, Kim D-K, Lee D-S *et al.* (1995). Application of acid urease to prevent ethyl carbamate formation in *Takju* processing. *Food Biotechnol*, 4: 34–38.

Kim Y-KL, Koh E, Chung H-J, Kwon H (2000). Determination of ethyl carbamate in some fermented Korean foods and beverages. *Food Addit Contam*, 17: 469–475. doi:10.1080/02652030050034055 PMID:10932790

Kitamoto K, Oda K, Gomi K, Takahashi K (1991). Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene. *Appl Environ Microbiol*, 57: 301–306. PMID:2036017

Kitamoto K, Odamiyazaki K, Gomi K, Kumagai C (1993). Mutant isolation of non-urea producing sake yeast by positive selection. *J Ferment Bioeng*, 75: 359–363. doi:10.1016/0922-338X(93)90134-T

Kobashi K, Takebe S, Sakai T (1988). Removal of urea from alcoholic beverages with an acid urease. *J Appl Toxicol*, 8: 73–74. doi:10.1002/jat.2550080112 PMID:3356867

Kocovský P (1986). Carbamates: A method of synthesis and some synthetic applications. *Tetrahedron Lett*, 27: 5521–5524. doi:10.1016/S0040-4039(00)85256-9

Kodama S & Yotsuzuka F (1996). Acid urease: Reduction of ethyl carbamate formation in sherry under simulated baking conditions. *J Food Sci*, 61: 304–307. doi:10.1111/j.1365-2621.1996.tb14181.x

Kodama S, Suzuki T, Fujinawa S *et al.* (1994). Urea contribution to ethyl carbamate formation in commercial wines during storage. *Am J Enol Vitic*, 45: 17–24.

Koh E, Lee Kim Y-K, Kwon H (2003). Arginine metabolism by *Bacillus subtilis* and *Zygosaccharomyces rouxii* isolated from Korean soysauce. *Food Sci Biotechnol*, 12: 62–66.

Lachenmeier DW (2005). Rapid screening for ethyl carbamate in stone-fruit spirits using FTIR spectroscopy and chemometrics. *Anal Bioanal Chem*, 382: 1407–1412. doi:10.1007/s00216-005-3285-2 PMID:15995863

Lachenmeier DW, Frank W, Kuballa T (2005a). Application of tandem mass spectrometry combined with gas chromatography to the routine analysis of ethyl carbamate in stone-fruit spirits. *Rapid Commun Mass Spectrom*, 19: 108–112. doi:10.1002/rcm.1755 PMID:15593063

Lachenmeier DW, Schehl B, Kuballa T *et al.* (2005b). Retrospective trends and current status of ethyl carbamate in German stone-fruit spirits. *Food Addit Contam*, 22: 397–405. doi:10.1080/02652030500073360 PMID:16019810

Lachenmeier DW, Nerlich U, Kuballa T (2006). Automated determination of ethyl carbamate in stone-fruit spirits using headspace solid-phase microextraction and gas chromatography–tandem mass spectrometry. *J Chromatogr A*, 1108: 116–120. doi:10.1016/j.chroma.2005.12.086 PMID:16427646

Lau BP, Weber D, Page BD (1987). Gas chromatographic–mass spectrometric determination of ethyl carbamate in alcoholic beverages. *J Chromatogr A*, 402: 233–241. doi:10.1016/0021-9673(87)80021-3

Liu SQ, Pritchard GG, Hardman MJ, Pilone GJ (1994). Citrulline production and ethyl carbamate (urethane) precursor formation from arginine degradation by wine lactic acid bacteria *Leuconostoc oenos* and *Lactobacillus buchneri*. *Am J Enol Vitic*, 45: 235–242.

Löfroth G & Gejvall T (1971). Diethyl pyrocarbonate: formation of urethan in treated beverages. *Science*, 174: 1248–1250. doi:10.1126/science.174.4015.1248 PMID:5133449

Ma YP, Deng FQ, Chen DZ, Sun SW (1995). Determination of ethyl carbamate in alcoholic beverages by capillary multi-dimensional gas chromatography with thermionic specific detection. *J Chromatogr A*, 695: 259–265. doi:10.1016/0021-9673(94)01155-8

MacKenzie WM, Clyne AH, MacDonald LS (1990). Ethyl carbamate formation in grain based spirits. II. The identification and determination of cyanide related species involved in ethyl carbamate formation in Scotch grain whisky. *J Inst Brew*, 96: 223–232.

MacNamara K, Burke N, Mullins E, Rapp A (1989). Direct quantification of ethyl carbamate in distilled alcoholic beverages using a cold capillary injection system and optimized selected ion monitoring. *Chromatographia*, 27: 209–215. doi:10.1007/BF02260448

Manley M, van Zyl A, Wolf EEH (2001). The evaluation of the applicability of Fourier transform near-infrared (FT-NIR) spectroscopy in the measurement of analytical parameters in must and wine. *S Afr J Enol Vitic*, 22: 93–100.

Matsudo T, Aoki T, Abe K *et al.* (1993). Determination of ethyl carbamate in soy sauce and its possible precursor. *J Agric Food Chem*, 41: 352–356. doi:10.1021/jf00027a003

McGill DJ & Morley AS (1990). Ethyl carbamate formation in grain spirits. IV. Radiochemical studies. *J Inst Brew*, 96: 245–246.

de Melo Abreu S, Alves A, Oliveira B, Herbert P (2005). Determination of ethyl carbamate in alcoholic beverages: an interlaboratory study to compare HPLC–

FLD with GC-MS methods. *Anal Bioanal Chem*, 382: 498–503. doi:10.1007/s00216-005-3061-3 PMID:15830190

Mildau G, Preuss A, Frank W, Heering W (1987). Ethyl carbamate (urethane) in alcoholic beverages: Improved analysis and light-dependent formation. *Deutsch Lebensm Rundsch*, 83: 69–74.

Mira de Orduña R, Liu SQ, Patchett ML, Pilone GJ (2000). Ethyl carbamate precursor citrulline formation from arginine degradation by malolactic wine lactic acid bacteria. *FEMS Microbiol Lett*, 183: 31–35. doi:10.1016/S0378-1097(99)00624-2 PMID:10650198

Mira de Orduña R, Patchett ML, Liu SQ, Pilone GJ (2001). Growth and arginine metabolism of the wine lactic acid bacteria *Lactobacillus buchneri* and *Oenococcus oeni* at different pH values and arginine concentrations. *Appl Environ Microbiol*, 67: 1657–1662. doi:10.1128/AEM.67.4.1657-1662.2001 PMID:11282618

Mirzoian A & Mabud A (2006). Comparison of methods for extraction of ethyl carbamate from alcoholic beverages in gas chromatography/mass spectrometry analysis. *J Assoc Off Anal Chem*, 89: 1048–1051.

Mossoba MM, Chen JT, Brumley WC, Page SW (1988). Application of gas chromatography/matrix isolation/Fourier transform infrared spectrometry to the determination of ethyl carbamate in alcoholic beverages and foods. *Anal Chem*, 60: 945–948. doi:10.1021/ac00160a022 PMID:3400877

Nomura T (1975). Transmission of tumors and malformations to the next generation of mice subsequent to urethan treatment. *Cancer Res*, 35: 264–266. PMID:1167346

Nout MJR, Ruikes MMW, Bouwmeester HM, Beljaars PR (1993). Effect of processing conditions on the formation of biogenic-amines and ethyl carbamate in soybean tempe. *J Food Saf*, 13: 293–303. doi:10.1111/j.1745-4565.1993.tb00114.x

Nusser R, Gleim P, Tramm A *et al.* (2001). [The removal of cyanide. New washing procedure with vapour.]*Kleinbrennerei*, 53: 6–9.

Ough CS (1976a). Ethylcarbamate in fermented beverages and foods. I. Naturally occurring ethylcarbamate. *J Agric Food Chem*, 24: 323–328. doi:10.1021/jf60204a033 PMID:1254812

Ough CS (1976b). Ethylcarbamate in fermented beverages and foods. II. Possible formation of ethylcarbamate from diethyl dicarbonate addition to wine. *J Agric Food Chem*, 24: 328–331. doi:10.1021/jf60204a034 PMID:3531

Ough CS & Trioli G (1988). Urea removal from wine by an acid urease. *Am J Enol Vitic*, 39: 303–307.

Ough CS, Crowell EA, Gutlove BR (1988a). Carbamyl compound reactions with ethanol. *Am J Enol Vitic*, 39: 239–242.

Ough CS, Crowell EA, Mooney LA (1988b). Formation of ethyl carbamate precursors during grape juice (chardonnay) fermentation. 1. Addition of amino-acids, urea, and ammonia — Effects of fortification on intracellular and extracellular precursors. *Am J Enol Vitic*, 39: 243–249.

Paterson E, Haddow A, Thomas IA, Watkinson JM (1946). Leukaemia treated with urethane compared with deep X-ray therapy. *Lancet*, 247: 677–683. doi:10.1016/S0140-6736(46)91555-3

Pieper HJ, Seibold R, Luz E, Jung O (1992a). Reduction of the ethyl carbamate concentration in manufacture of Kirsch (cherry spirit) (II). *Kleinbrennerei*, 44: 158–161.

Pieper HJ, Seibold R, Luz E, Jung O (1992b). Reduction of the ethyl carbamate concentration in manufacture of Kirsch (cherry spirit). *Kleinbrennerei*, 44: 125–130.

Pierce WM Jr, Clark AO, Hurst HE (1988). Determination of ethyl carbamate in distilled alcoholic beverages by gas chromatography with flame ionization or mass spectrometric detection. *J Assoc Off Anal Chem*, 71: 781–784. PMID:3417601

Schehl B, Lachenmeier D, Senn T, Heinisch JJ (2005). Effect of the stone content on the quality of plum and cherry spirits produced from mash fermentations with commercial and laboratory yeast strains. *J Agric Food Chem*, 53: 8230–8238. doi:10.1021/jf0511392 PMID:16218669

Schehl B, Senn T, Lachenmeier DW *et al.* (2007). Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits. *Appl Microbiol Biotechnol*, 74: 843–850. doi:10.1007/s00253-006-0736-4 PMID:17216464

Sen NP, Seaman SW, Weber D (1992). A method for the determination of methyl carbamate and ethyl carbamate in wines. *Food Addit Contam*, 9: 149–160. PMID:1499772

Sen NP, Seaman SW, Boyle M, Weber D (1993). Methyl carbamate and ethyl carbamate in alcoholic beverages and other fermented foods. *Food Chem*, 48: 359–366. doi:10.1016/0308-8146(93)90318-A

Sponholz WR, Kürbel H, Dittrich HH (1991). Formation of ethyl carbamate in wine. *Vitic enol Sci*, 46: –11.–17.

Stevens DF & Ough CS (1993). Ethyl carbamate formation: Reaction of urea and citrulline with ethanol in wine under low to normal temperature conditions. *Am J Enol Vitic*, 44: 309–312.

Suzuki K, Kamimura H, Ibe A *et al.* (2001). Formation of ethyl carbamate in umeshu (plum liqueur) *Shokuhin Eiseigaku Zasshi*, 42: 354–358. doi:10.3358/shokueishi.42.354 PMID:11875819

Taki N, Imamura L, Takebe S, Kobashi K (1992). Cyanate as a precursor of ethyl carbamate in alcoholic beverages. *Jap J Toxicol Environ Health*, 38: 498–505.

Tariff Commission (1945). *Synthetic Organic Chemicals, United States Production and Sales, 1941–1943* (Second Series, Report No. 153), Washington DC, US Government Printing Office, p. 106.

Tegmo-Larsson IM & Henick-Kling T (1990). Ethyl carbamate precursors in grape juice and the efficiency of acid urease on their removal. *Am J Enol Vitic*, 41: 189–192.

Tegmo-Larsson IM & Spittler TD (1990). Temperature and light effects on ethyl carbamate formation in wine during storage. *J Food Sci*, 55: 1166–1167, 1169. doi:10.1111/j.1365-2621.1990.tb01624.x

Terrade N & Mira de Orduña R (2006). Impact of winemaking practices on arginine and citrulline metabolism during and after malolactic fermentation. *J Appl Microbiol*, 101: 406–411. doi:10.1111/j.1365-2672.2006.02978.x PMID:16882148

Uthuray CA, Varela F, Colomo B *et al.* (2004). Ethyl carbamate concentrations of typical Spanish red wines. *Food Chem*, 88: 329–336. doi:10.1016/j.foodchem.2004.01.063

Uthuray CA, Suarez-Lepe JA, Lombardero J, Garcia-del-Hierro JR (2006). Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. *Food Chem*, 94: 262–270.

Vahl M (1993). A survey of ethyl carbamate in beverages, bread and acidified milks sold in Denmark. *Food Addit Contam*, 10: 585–592. PMID:8224327

van Ingen RHM, Nijssen LM, Van den Berg F, Maarse H (1987). Determination of ethyl carbamate in alcoholic beverages by two-dimensional gas chromatography. *J High Resolut Chromatogr*, 10: 151–152. doi:10.1002/jhrc.1240100310

Walker G, Winterlin W, Fouada H, Seiber J (1974). Gas chromatographic analysis of urethan (ethyl carbamate) in wine. *J Agric Food Chem*, 22: 944–947. doi:10.1021/jf60196a007 PMID:4430804

Wang S-HW & Gow CY (1998). Determination of ethyl carbamate in non-alcoholic fermented foods marketed in Taiwan. *J Food Drug Anal*, 6: 517–527.

Wang S-HW, Sheu FC, Gow CY (1997). Determination of ethyl carbamate in alcoholic beverages retailed in Taiwan. *J. Chinese agric. Chem Soc*, 35: 40–51.

Wasserfallen K & Georges P (1987). [Gas-chromatographic determination of urethane in spirits and mashes.]*Z Lebensm Unters Forsch*, 184: 392–395. doi:10.1007/BF01126665

Watkins SJ, Hogg TA, Lewis MJ (1996). The use of yeast inoculation in fermentation for port production; effect on total potential ethyl carbamate. *Biotechnol Lett*, 18: 95–98. doi:10.1007/BF00137818

Weltring A, Rupp M, Arzberger U *et al.* (2006). Ethyl carbamate: Analysis of questionnaires about production methods of stone-fruit spirits at German small distilleries. *Dtsch Lebensmitt Rundsch*, 102: 97–101.

Whiton RS & Zoecklein BW (2002). Determination of ethyl carbamate in wine by solid-phase microextraction and gas chromatography/mass spectrometry. *Am J Enol Vitic*, 53: 60–63.

Woo IS, Kim IH, Yun UJ *et al.* (2001). An improved method for determination of ethyl carbamate in Korean traditional rice wine. *J Ind Microbiol Biotechnol*, 26: 363–368. doi:10.1038/sj.jim.7000148 PMID:11571620

Wucherpfennig K, Clauss E, Konja G (1987). Formation of ethyl carbamate in alcoholic beverages based on the maraschino cherry. *Dtsch Lebensmitt Rundsch*, 83: 344–349.

Yoshiuchi K, Watanabe M, Nishimura A (2000). Breeding of a non-urea producing sake yeast with killer character using a karl-1 mutant as a killer donor. *J Ind Microbiol Biotechnol*, 24: 203–209. doi:10.1038/sj.jim.2900797

Zimmerli B & Schlatter J (1991). Ethyl carbamate: analytical methodology, occurrence, formation, biological activity and risk assessment. *Mutat Res*, 259: 325–350. doi:10.1016/0165-1218(91)90126-7 PMID:2017216