Analyse – Suites Formulaire

Suites numériques

L. Généralités sur les suites

Une suite numérique est une **succession infinie de réels**. Une suite numérique est donc une fonction définie sur l'ensemble des **entiers naturels** N.

Une suite numérique (u_n) définie à partir du rang p est une fonction qui à chaque entier $n \ge p$ associe un réel, noté u_n . Cette suite est aussi notée $(u_n)_{n \ge p}$ ou simplement u. u_n est appelé le **terme général** de la suite ou le **terme d'indice** n.

 u_p est le **terme initial** ou le **premier terme** de la suite.

Attention!

- u_{n+1} est le terme d'indice n+1. C'est le terme qui suit le terme d'indice n, c'est-à-dire u_n . On ne doit pas le confondre avec u_n+1 qui est la somme de u_n , le terme d'indice n, et de 1.
- u_{n-1} est le terme d'indice n-1. Il précède le terme u_n .

Une suite numérique (u_n) peut être représentée par un **nuage de points** de coordonnées $(n; u_n)$.

II. Mode de génération d'une suite numérique

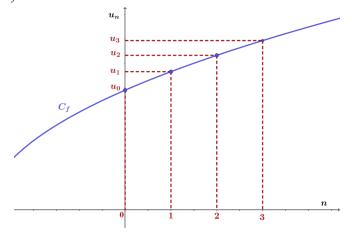
II.1 Suite définie par une formule explicite

Soit a un nombre réel et f une fonction définie sur l'intervalle $[a; +\infty[$. On peut définir une suite (u_n) en posant pour tout entier $n \ge a$, $u_n = f(n)$. Une suite (u_n) est définie de **façon explicite** quand le terme u_n est exprimé en fonction de n.

Avec cette définition, on peut donc calculer n'importe quel terme de la suite à partir de son indice.

Représentation graphique

Graphiquement, les termes de la suite (u_n) sont les ordonnées des points $A_n(n;u_n)$ d'abscisses entières de la courbe C_f .



Analyse – Suites Formulaire

II.2 Suite définie par une formule de récurrence

Soit f une fonction définie sur un ensemble I. On suppose que si $x \in I$, alors $f(x) \in I$. Soit a un nombre réel de I et p un entier. On peut alors définir une suite (u_n) en posant $u_p = a$ et pour tout entier $n \ge p$, $u_{n+1} = f(u_n)$.

III. Sens de variations

```
• Une suite (u<sub>n</sub>) est croissante à partir du rang p si pour tout n≥p, u<sub>n+1</sub>≥u<sub>n</sub>.
• Une suite (u<sub>n</sub>) est décroissante à partir du rang p si pour tout n≥p, u<sub>n+1</sub>≤u<sub>n</sub>.
• Une suite (u<sub>n</sub>) est monotone si elle est soit croissante, soit décroissante à partir du rang p.
• Une suite (u<sub>n</sub>) est stationnaire à partir du rang p si pour tout n, u<sub>n+1</sub>=u<sub>n</sub>.
• Une suite (u<sub>n</sub>) est constante lorsque pour tout n, u<sub>n+1</sub>=u<sub>n</sub>.
```

Méthode : étude du signe de la différence

Soit (u_n) une suite.

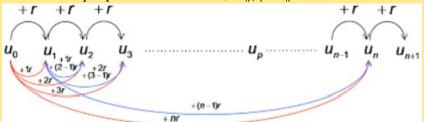
- Si à partir du rang p , pour tout entier $n \ge p$, $u_{n+1} u_n \ge 0$, alors (u_n) est une suite croissante.
- Si à partir du rang p, pour tout entier $n \ge p$, $u_{n+1} u_n \le 0$, alors (u_n) est une suite décroissante.

Suites arithmétiques et géométriques

I. Suites arithmétiques

On dit qu'une suite (u_n) est arithmétique si, à partir de son premier terme, chaque terme est obtenu en ajoutant au précédent un même nombre.

Ainsi, il existe un réel r tel que pour tout entier n, $u_{n+1}=u_n+r$.



Le nombre r est appelé **raison** de la suite arithmétique (u_n) . Il est égal à la différence entre deux termes consécutifs quelconques : pour tout entier n, $r = u_{n+1} - u_n$.

Soit (u_n) une suite arithmétique de raison r.

Pour tous entiers n et p tels que $n \ge p$, on a $u_n = u_p + (n-p)r$.

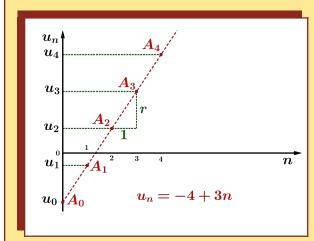
En particulier, pour tout entier n, $u_n = u_0 + nr$.

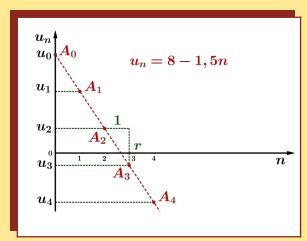
Soit (u_n) une suite arithmétique de raison r et de premier terme u_n .

- Si r > 0, alors la suite (u_n) est (strictement) **croissante**.
- Si r < 0, alors la suite (u_n) est (strictement) **décroissante**.
- Si r=0, alors la suite (u_n) est **constante**, égale à u_p .

La représentation graphique d'une suite arithmétique (u_n) est un ensemble de points isolés alignés de coordonnées $(n; u_n)$.

Ces points sont situés sur une **droite** d'équation $y=rx+u_0$ (le coefficient directeur de la droite est la raison r).

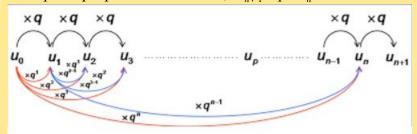




II. Suites géométriques

On dit qu'une suite (u_n) est **géométrique** si, à partir de son premier terme, **chaque terme est** obtenu en multipliant le précédent par un même nombre.

Ainsi, il existe un réel q tel que pour tout entier n, $u_{n+1}=q\times u_n$.



Le nombre q est appelé **raison** de la suite géométrique (u_n) .

Dans le cas où la suite (u_n) ne s'annule pas, q est égal au quotient de deux termes consécutifs

quelconques : pour tout entier n, $q = \frac{u_{n+1}}{u_n}$.

Soit (u_n) une suite géométrique de raison q.

Pour tous entiers n et p tels que $n \ge p$, on a $u_n = u_p \times q^{n-p}$.

En particulier, pour tout entier n, $u_n = u_0 \times q^n$.

Soit (u_n) une suite géométrique de raison q et de premier terme $u_p > 0$.

- Si q > 1, alors la suite (u_n) est (strictement) **croissante**.
- Si 0 < q < 1, alors la suite (u_n) est (strictement) **décroissante**.
- Si q=1, alors la suite (u_n) est **constante**, égale à u_p .
- Si q < 0, alors la suite (u_n) n'est pas monotone.

Remarque

Si $u_p < 0$, ces sens de variations sont **inversés**.

La représentation graphique d'une suite géométrique (u_n) est un ensemble de points isolés $(n; u_n)$, situés sur une courbe dite exponentielle.

