Trigonométrie

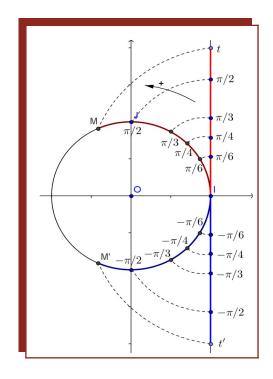
I. Cercle trigonométrique

Le **cercle trigonométrique** est un cercle de centre O et de rayon 1 sur lequel on choisit un sens de parcours, le sens direct ou indirect.

Enroulement de la droite des réels :

Soit d une droite numérique graduée dont le zéro coı̈ncide avec le point I . Quant on enroule , sur le cercle C, la demi-droite des réels positifs dans le sens direct, et celle des réels négatifs dans le sens indirect, chaque réel t vient s'appliquer sur un point M du cercle C. On dit alors que M est l'image de t sur le cercle C.

La longueur (périmètre) du cercle trigonométrique étant 2π , deux réels t_1 et t_2 ont même point image sur C si et seulement si l'enroulement de la droite des réels entre t_1 et t_2 correspond à un nombre entier de tours de C.

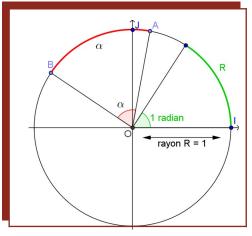


Tout point du cercle est l'image d'une infinité de réels. Si t est l'un deux, les autres sont les réels $t + 2k\pi$, où k est un entier relatif.

II. Le radian

Le **radian** est l'unité de mesure des angles telle que la mesure en radian d'un angle est égale à la longueur de l'arc que cet angle intercepte sur un cercle de rayon R.

Les mesures en degré et en radian d'un angle sont proportionnelles : $180 \times \alpha = \pi \times d$.

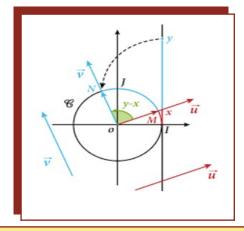


Angle d en degré	180	90	60	45	30	0
Angle α en radian	π	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0

III. Mesure d'un angle orienté et mesure principale

Le plan est muni d'un repère orthonormé direct $(O; \vec{i}, \vec{j})$. On considère deux vecteurs non nuls \vec{u} et \vec{v} et on construit sur le cercle trigonométrique les points M et N tels que \overrightarrow{OM} soit colinéaire et de même sens que \vec{u} et \overrightarrow{ON} soit colinéaire et de même sens que \vec{v} .

- La mesure de l'angle orienté (\vec{u}, \vec{v}) est égale à celle de l'angle orienté $(\overrightarrow{OM}, \overrightarrow{ON})$.
- Pour tout réel x associé au point M et tout réel y associé au point N, y-x est une mesure en radian de l'angle orienté (\vec{u}, \vec{v}) .



- L'unique mesure en radian d'un angle orienté (\vec{u}, \vec{v}) appartenant à l'intervalle $]-\pi;\pi]$ est appelé la **mesure principale** de cet angle.
- La valeur absolue de la mesure principale d'un angle orienté (\vec{u}, \vec{v}) est égale à la mesure, en radian, de l'**angle géométrique** défini par \vec{u} et \vec{v} .

Méthode : Déterminer la mesure principale d'un angle orienté

Déterminons la mesure principale de l'angle $x = \frac{273 \,\pi}{12}$.

 $1^{\grave{e}re}$ méthode : On cherche $k \in \mathbb{Z}$ tel que $x = \alpha + 2k\pi$ et $-\pi < \alpha \le \pi$.

On effectue la division euclidienne de 273 par 12. On a $273 = 12 \times 22 + 9$.

D'où
$$\frac{273\pi}{12} = \frac{9\pi + 22 \times 12\pi}{12} = \frac{9\pi}{12} + 22\pi = \frac{3\pi}{4} + 2 \times 11\pi = \frac{3\pi}{4} [2\pi]$$
 (on trouve $k = 11$).

La mesure principale de l'angle $x = \frac{273 \,\pi}{12}$ est $\frac{3 \,\pi}{4}$.

 2^e méthode: On cherche $k \in \mathbb{Z}$ tel que $x = \alpha + 2k\pi$ et $-\pi < \alpha \le \pi$.

On a alors $\alpha = x - 2k \pi = \frac{273 \pi}{12} - 2k \pi$.

$$-\pi < \alpha \le \pi \Leftrightarrow -\pi < \frac{273 \pi}{12} - 2 k \pi \le \pi$$

$$\Leftrightarrow -\pi - \frac{273 \pi}{12} < -2 k \pi \le \pi - \frac{273 \pi}{12}$$

$$\Leftrightarrow -\frac{285 \pi}{12} < -2 k \pi \le -\frac{261 \pi}{12}$$

$$\Leftrightarrow 10,875 \le k < 11,875$$

Comme k est un entier relatif, on a k=11.

Donc
$$\alpha = x - 2k \pi = \frac{273 \pi}{12} - 2 \times 11\pi = \frac{273 \pi}{12} - \frac{264 \pi}{12} = \frac{9\pi}{12} = \frac{3\pi}{4}$$
.

La mesure principale de l'angle $x = \frac{273 \pi}{12}$ est $\frac{3 \pi}{4}$.

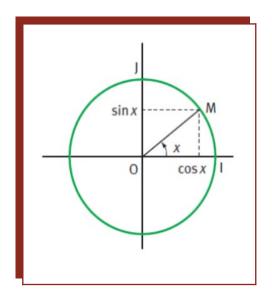
IV. Cosinus et sinus

Soit M un point image d'un réel x sur le cercle trigonométrique.

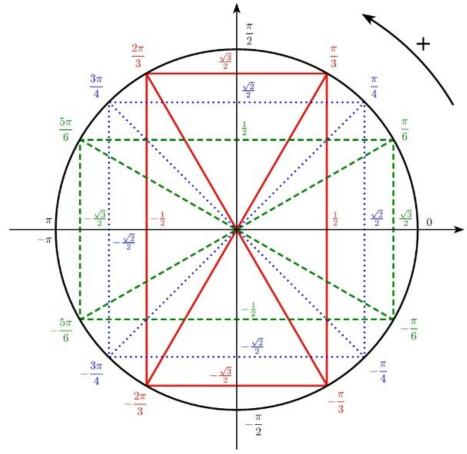
Dans un repère $(O; \vec{i}, \vec{j})$, le cosinus de x, noté $\cos x$, est l'abscisse du point M et le sinus de x, noté $\sin x$, est son ordonnée.

Soit x un réel et k un entier relatif. On a :

- $-1 \le \cos x \le 1$ et $-1 \le \sin x \le 1$
- $\cos^2 x + \sin^2 x = 1$
- $\cos(x+2k\pi) = \cos x$ et $\sin(x+2k\pi) = \sin x$



Valeurs remarquables



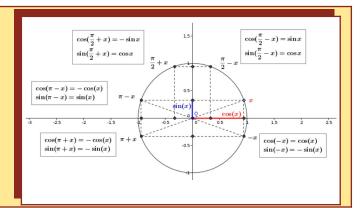
x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

V. Formules et équations

Angles associés

Pour tout réel x, on a :

- $\cos(-x) = \cos x$ et $\sin(-x) = -\sin x$
- $\cos(\pi + x) = -\cos x$ et $\sin(\pi + x) = -\sin x$
- $\cos(\pi x) = -\cos x$ et $\sin(\pi x) = \sin x$
- $\cos\left(\frac{\pi}{2} + x\right) = -\cos x$ et $\sin\left(\frac{\pi}{2} + x\right) = \sin x$
- $\left| \cos \left(\frac{\pi}{2} x \right) \right| = \cos x \text{ et } \sin \left(\frac{\pi}{2} x \right) = \sin x$



Équations trigonométriques

Soit x et a deux réels.

L'équation $\cos x = \cos a$ admet les solutions suivantes :

$$x=a+2k\pi$$
 ou $x=-a+2k\pi$, avec $k\in\mathbb{Z}$

L'équation $\sin x = \sin a$ admet les solutions suivantes :

$$x=a+2k\pi$$
 ou $x=\pi-a+2k\pi$, avec $k\in\mathbb{Z}$

VI. Fonctions cosinus et sinus

VI.1 Définitions

- La fonction sinus est la fonction définie sur \mathbb{R} par $x \to \sin x$.
- La fonction cosinus est la fonction définie sur \mathbb{R} par $x \to \cos x$.

VI.2 Périodicité

Les fonctions sinus et cosinus sont **périodiques** de période 2π . Elle sont dites 2π -périodique. Pour tout réel x, $\sin(x+2k\pi)=\sin x$ et $\cos(x+2k\pi)=\cos x$.

VI.3 Parité

• La fonction sinus est une fonction **impaire**. Pour tout réel x, $\sin(-x) = -\sin x$.

Sa courbe représentative est symétrique par rapport à l'origine du repère.

• La fonction cosinus est une fonction paire. Pour tout réel x, $\cos(-x) = \cos x$.

Sa courbe représentative est symétrique par rapport à l'axe des ordonnées.

VI.4 Dérivées

- La fonction sinus est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $\sin' x = \cos x$.
- La fonction cosinus est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $\cos' x = -\sin x$.

VI.5 Signes

Sur l'intervalle $]\pi;\pi]$, les fonctions sinus et cosinus ont les signes suivants :

x	$-\pi$		$-\frac{\pi}{2}$		0		$\frac{\pi}{2}$		π
sin x	0	-	-1	_	0	+	1	+	
$\cos x$	-1	_	0	+	1	+	0	_	

VI.6 Variations

Les fonctions sinus et cosinus étant périodiques de période 2π , il suffit de les étudier sur un intervalle d'amplitude 2π . On choisit l'intervalle $]-\pi;\pi]$.

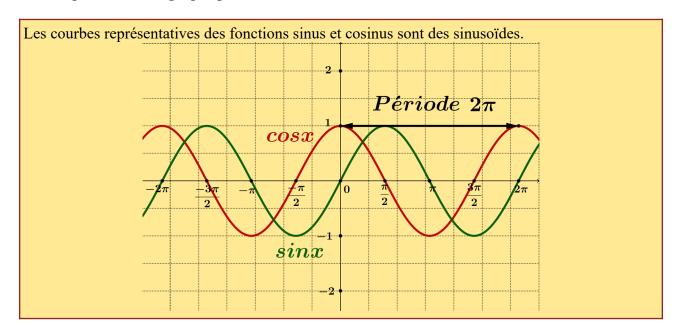
• Variations de la fonction sinus

ac in ionetion sine						
x	$-\pi$	$-\frac{\pi}{2}$		$\frac{\pi}{2}$		π
$\sin' x = \cos x$	_	0	+	0	_	
$\sin x$		→ -1 <i>~</i>	/	1 >		0

• Variations de la fonction cosinus

x	$-\pi$		0		π
$\cos' x = -\sin x$		+	0	_	
cos x	-1		, 1 ·	<u></u>	-1

VI.7 Représentations graphiques



VII. Fonctions composées $x \to \sin(ax + b)$ et $x \to \cos(ax + b)$

Soit a et b deux réels.

• La fonction f définie sur \mathbb{R} par $f(x) = \sin(ax + b)$ est dérivable sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, $f'(x) = a \cos(a x + b)$.

• La fonction f définie sur \mathbb{R} par $f(x) = \cos(ax + b)$ est dérivable sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, $f'(x) = -a\sin(ax + b)$.

Les fonctions $x \rightarrow \sin(ax+b)$ et $x \rightarrow \cos(ax+b)$ sont $\frac{2\pi}{a}$ périodiques.

VIII. Résolution d'inéquations trigonométriques

Méthode 1 : Résolution graphique à l'aide des courbes représentatives

Sur la courbe représentative de la fonction sinus (respectivement cosinus), on colorie les points dont l'ordonnée est strictement inférieure à k. Leurs abscisses sont les solutions de l'inéquation $\sin x < k$ (respectivement $\cos x < k$).

Méthode 2 : Résolution graphique à l'aide du cercle trigonométrique

Sur le cercle trigonométrique, on colorie les points associés à un réel dont le sinus (respectivement le cosinus) est strictement inférieur à k, c'est-à-dire qui ont une ordonnée (respectivement une abscisse) strictement inférieure à k. On repère les réels auxquels sont associés ces points.